
Alpha-Renaming of Higher-Order Meta-Expressions
David Sabel

∗

Goethe-University

Frankfurt am Main, Germany

sabel@ki.cs.uni-frankfurt.de

ABSTRACT
Motivated by tools for automated deduction on functional program-

ming languages and programs, we propose a formalism to symboli-

cally represent α-renamings for meta-expressions. The formalism

is an extension of higher-order meta-syntax which allows one to

α-rename all valid ground instances of a meta-expression to fulfill

the distinct variable convention. The renaming mechanism may be

helpful for several reasoning tasks in deduction systems.We present

our approach for a meta-language which uses higher-order oper-

ators and meta-notation for recursive let-bindings, contexts, and

environments. It is used in the LRSX Tool – a tool to reason on the

correctness of program transformations in higher-order program

calculi with respect to their operational semantics. Besides introduc-

ing symbolic α-renamings, we present and analyze algorithms for

simplification of α-renamings, matching, rewriting, and checking

α-equivalence of symbolically α-renamed meta-expressions.

CCS CONCEPTS
• Theory of computation → Rewrite systems; Logic and verifica-
tion; Functional constructs; Program specifications; Program verifica-
tion; • Software and its engineering→ Functional languages;

KEYWORDS
semantics, verification, functional programming, α-renaming

ACM Reference Format:
David Sabel. 2017. Alpha-Renaming of Higher-Order Meta-Expressions. In

Proceedings of PPDP’17, Namur, Belgium, October 9–11, 2017, 12 pages.
https://doi.org/10.1145/3131851.3131866

1 INTRODUCTION
We focus on automatically proving correctness of program transfor-

mations for higher-order programming languages with recursive

bindings as they occur in functional programming languages with

call-by-need semantics like Haskell (see [1, 2, 32]). One technique

to establish such proofs for program calculi with small-step opera-

tional semantics is the diagram method [27, 32] which can roughly

be described as follows: First all overlaps between calculus reduc-

tions and a transformation step are computed, then the overlaps

are joined by transformation and reduction steps resulting in a

complete set of diagrams, which is then used in an inductive proof
1

∗
This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under

grant SA2908/3-1

1
See [24] for an automation of this step using automated termination provers.

PPDP’17, October 9–11, 2017, Namur, Belgium
© 2017 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
PPDP’17, October 9–11, 2017 , https://doi.org/10.1145/3131851.3131866.

to show correctness of the transformation w.r.t. contextual equiva-

lence [14, 22]. This diagram method was e.g. used in [27, 32] and

similar techniques are in [11, 12, 34], where the overlaps and the

joins are computed manually by a case-analysis. In our recently

developed LRSX Tool
2
we try to automate these computations for

a generic meta-language – called LRSX. The input of the tool is a
calculus description consisting of the small-step reduction rules

and the transformation rules. Overlaps are computed by a unifica-

tion algorithm [30] and reductions and transformations to join the

overlaps are applied using a matching algorithm [26].

To represent different (untyped) program calculi, the language

LRSX is parametric over a set of higher-order function symbols

and over a set of context classes. The latter can for instance be

used to describe the appropriate class of evaluation contexts of

the represented programming language. To represent call-by-need

functional programming languages, LRSX has a letrec-construct

letrec x1 = s1; . . . ; xn = sn in sn+1 where x1 = s1; . . . ; xn = sn
is an unordered sets of recursive bindings (the scope of the letrec-

bound variables xi is s1, . . . , sn+1). To model small-step reduction

rules of call-by-need program calculi (see e.g. [1, 2, 31, 32]), the

language LRSX provides meta-variables for expressions, variables,

parts of letrec-environments, and contexts of different classes.

Meta-expressions are interpreted in first-order fashion by in-

stantiating them with all possible ground expressions and thus

LRSX-expressions represent (potentially infinite) sets of (ground)

expressions. However, the main data structure for meta-programs

in the LRSX Tool are so-called constrained expressions which are

meta-expressions augmented by constraints that restrict the in-

stances. For example, consider the transformation (llet):

C[letrec E1 in letrec E2 in S]
l let
−−−→ C[letrec E1;E2 in S]

which joins two nested letrec-environments and where S is a meta-

variable for an arbitrary expression, C is a meta-variable for an

arbitrary context, and E1,E2 are meta-variables for arbitrary letrec-

environments. Using this rule without constraints would allow

one to instantiate the meta-variable E1 by the environment which

consists of a single binding
3 x = y, meta-variable E2 by an en-

vironment which consists of a single binding y = True, meta-

variable S by x, and meta-variableC by the empty context resulting

in the instantiated rule letrec x = y in letrec y = True in x
→ letrec x = y; y = True in x which however should be forbid-

den, since variable y in x = y is a free occurrence in the left expres-

sion, but becomes a bound occurrence (captured by the binding

y = True) in the right expression. So-called non-capture constraints
forbid those instantiations. They are pairs (s,d) where s is a meta-

expression, d is a meta-context and they are satisfied by a ground

2http://goethe.link/LRSXTOOL
3
Later in this paper these bindings are written as x.var y, since “.” is used instead of

“=” and the function symbol var is necessary to lift variables to expressions.

https://doi.org/10.1145/3131851.3131866
https://doi.org/10.1145/3131851.3131866

PPDP’17, October 9–11, 2017, Namur, Belgium David Sabel

instantiation ρ if context ρ (d) does not capture any variable of ρ (s).
For our example, (s0,d0) = (letrec E1 in True, letrec E2 in [·])
guarantees that no variable of E1 is captured by the binders of E2.

In turn, if during computing joins, expressions occur which

violate the constraints, then in some cases the diagram calculation

fails. For instance, consider the overlap of (llet) with itself and a

suggested join (written using dashed arrows):

letrec E1 in
letrec E2 in

letrec E ′
2
in S

l let //

l let
��

letrec E1;E2 in
letrec E ′

2
in S

l let

��letrec E1 in
letrec E2;E

′
2
in S l let

// letrec E1;E2;E ′
2
in S

As explained before, (llet) is constrained by the non-capture con-

straint (s0,d0). For the step from the upper-left expression to the

upper-right expression, the constraint ensures that the binders of

E2 do not capture variables of E1, and for the step from the upper-

left expression to the lower-left expression, the constraint ensures

that the binders of E ′
2
do not capture variables of E2. However,

for closing the overlap the step from the lower-left expression to

the lower-right expression requires the knowledge that binders of

E2;E
′
2
do not capture variables of E1 and the step from the upper-

right to the lower-right expression requires the knowledge that

binders of E ′
2
do not capture variables of E1,E2. In both cases the

required knowledge cannot be inferred from the given knowledge

and thus the suggested join cannot be computed. Moreover, there

are instances which forbid the suggested join, for example, with

ρ = {E1 7→ x = z,E2 7→ y = True,E ′
2
7→ z = True, S 7→ x}, the sug-

gested join would lead to ρ (letrec E1;E2;E
′
2
in S) = letrec x =

z; y = True; z = True in x which illegally captures the variable z.
The solution to attack those problems in a pen-and-paper-proof

is to rename binders by fresh α-renamings. For the above instance,

we may α-rename letrec x = z; y = True in letrec z = True in x
into letrec x = z; y = True in letrec z′ = True in x and α-
rename letrec x = z in letrec y = True; z = True in S into

letrec x = z in letrec y = True; z′ = True in S and then apply

the (llet)-transformations of the suggested join. The goal of this

paper is to perform such renamings on the meta-level (and not on

the (infinitely many) concrete instances). Thus we want to rename

letrec E1;E2 in letrec E
′
2
in S to guarantee that for all instantia-

tions ρ the letrec-bound variables of ρ (E ′
2
) do not capture variables

of ρ (E1;E2). Furthermore, an appropriate mechanism of such a sym-

bolic α-renaming must allow one to do further reasoning with the

expressions. Our approach attaches symbolic renamings directly to

the subexpressions as deeply as possible. Atomic symbolic renam-

ings are of the form αU ,i ·U for a meta-variableU (which may be

an environment variable, an expression variable, a context variable)

with the meaning that instantiations ρ guarantee that ρ (αU ,i ·U)
is an α-renamed copy of ρ (U) where the α-renaming is fresh (all

introduced variables are new) and the distinct variable convention

(bound variables are pairwise disjoint from free variables, and all

binders bind different variables) holds for ρ (αU ,i ·U). Since these
renamings affect also other subexpressions, we have to distribute

them along the term and binding structure.

Thus to treat α-renamings, we extend the LRSX by syntactic

constructs to represent the α-renamings. The extended language

is called LRSXα . Adding such a syntactic support for α-renamings

should be possible for any meta-language with variable binders, so

the use of language LRSX should be understood as exemplary but

not exclusive. Besides the definition of the syntax and the (ground

term-) semantics of LRSXα-expressions, further results of this paper
target basic reasoning tasks with LRSX- and LRSXα-expressions. A
first algorithm performs α-renaming, i.e. it takes an LRSX-meta

expression and delivers an LRSXα-meta expression such that on the

semantic level the instances are α-renamed by a fresh renaming. A

further procedure performs simplification of symbolic α-renamings,

i.e. it deduces that parts of the symbolic renamings can be removed.

This procedure is important for our automated tool, since in the

tool equivalence of expressions has to be detected and without

simplification of renamings this is impossible in many cases. We

provide an adaptation of the matching algorithm from [26] such

that LRSXα-expressions can be matched against LRSX-expressions
which allows one to rewrite LRSXα-expressions. However, this may

require one to adapt the symbolic α-renaming after a rewrite step

and thus we present an algorithm for this task. We finally present

a test to check α-equivalence of LRSXα-expressions.

Related Work. We discuss approaches to represent higher-order

languages with binders and their treatment of α-renaming.

A general approach to represent higher-order languages with

binders is higher-order abstract syntax [16] where binders of the

object language are represented by binders of the meta-language.

For instance, the Twelf system [17] uses this approach for imple-

menting the logical framework LF [9]. More recent work extends

this approach also to contextual modal type theory [15, 18, 20]

which allows one to represent and reason about contexts. The ap-

proach is implemented in Beluga [19] and also allows one to reason

with context variables but in contrast to LRSX there seems to be

no easy mechanism to express the syntactic structure of contexts

and context variables (as LRSX’ context classes do) and as a fur-

ther difference the language LF and its extensions do not provide a

syntactic letrec-construct as it is available in LRSX. In general the

approaches using higher-order abstract syntax are used to represent

and implement logical frameworks, which require a quite compli-

cated mathematical machinery with very sophisticated techniques

(like dependent type theory). This is not our focus, since the tar-

geted diagram method is a syntactic method. Thus, in comparison

to higher-order abstract syntax, our approach uses a first-order

representation and is light-weight and syntax-oriented. On the one

hand, algorithms for first-order syntax (like unification and match-

ing, even with meta-variables for contexts and letrec-expressions)

can be adapted for our representation, on the other hand, our ap-

proach requires to take care about low-level details like explicitly

performing α-renaming.

A further possibility to avoid explicit α-renaming would be to

use a canonical representation of bindings such as de Bruijn indices

[7] and locally nameless approaches [3, 6, 13], or a canonical choice

of names [23]. One hurdle in using such an approach is to combine

it with our requirements to have meta-variables for contexts and

environments, but a more important problem is that it is unclear

how to define a canonical representation for letrec-expressions and

Alpha-Renaming of Higher-Order Meta-Expressions PPDP’17, October 9–11, 2017, Namur, Belgium

their unordered set of bindings. Since deciding α-equivalence of
ground letrec-expressions is GI-complete (see [29]) there does not

seem to be an efficiently computable canonical representation. For

these reasons, LRSX uses a ’nameful’ approach.

Another approach for syntactic reasoning on expressions with

binders w.r.t. α-equivalence are nominal techniques [21], including

nominal unification [5, 10, 33], nominal matching [4], and nomi-

nal rewriting [8] where recently also nominal terms with letrec

were analyzed [28]. The semantics of nominal meta-terms are all α-
equivalent expressions of all instances. Similarly to our constrained

expressions, nominal terms allow one to use so-called freshness

constraints to forbid unwanted instantiations. In our approach, an

α-renamed meta-expression represents only those α-equivalent
expressions which fulfill the distinct variable convention which

seems to be an indispensable requirement for the example of trans-

formation (llet). Using freshness constraints, instances of nominal

meta-terms can be restricted to ensure that the distinct variable con-

vention holds. However, this requires knowledge about the binders

(to form freshness constraints). Our approach is more general since

it includes meta-syntax with meta-variables representing contexts

and parts of letrec-environments. Adding them to nominal tech-

niques seems to be non-trivial and complicated and thus it is not

considered in this work.

Outline. In Sect. 2 we introduce the languages LRS and LRSX, and
in Sect. 3 we extend them by symbolic α-renamings and give an

algorithm to symbolically α-rename LRSX-expressions. In Sect. 4

we consider simplification of symbolic α-renamings. In Sect. 5 we

present further algorithms for symbolically α-renamed expressions,

i.e. a matching algorithm, an algorithm to refresh the α-renaming

after a rewrite step was applied, and an algorithm to check α-
equivalence. Experimental results are discussed in Sect. 6. In Sect. 7

we conclude. Due to space constraints some proofs are omitted, but

can be found in the technical report [25].

2 LANGUAGES LRS AND LRSX
We introduce two languages. The language LRS is a functional lan-

guage with higher-order operators (like lambda-abstractions) and

letrec-expressions which represent shared and recursive bindings.

The meta-language LRSX extends LRS by meta-variables for vari-

ables, expressions, contexts, and (parts of) letrec-environments.

An LRSX-expression represents a set of LRS-expressions which

can be generated by instantiating the meta-variables with LRS-
variables, -expressions, -contexts, or letrec-environments, resp. An

LRSX-expression is ground iff it is an LRS-expression. Both languages

are parametrized over a set of function symbols F and a set K of

context classes. A context class K ∈ K is a set of contexts which is

provided as a part of the input and defined by a grammar
4
.

2.1 The Language LRS
Definition 2.1. The syntax of LRS is defined in Fig. 1. The four

syntactic categories of objects areVar for a countably-infinite set of

4
For instance, the class A of call-by-name evaluation contexts of the pure lambda

calculus can be described with the grammar (using LRSX-expressions, see Sect. 2.2)
A ::= [·] | appAS where [·] is the empty context and S is an expressionmeta-variable.

x, y, z ∈ Var
s, t ∈ HExpr0 ::= letrec env in s | (f r1 . . . rar (f))

where ri ∈ HExprk if oar (f) (i) = k ≥ 0, and

ri ∈ Var, if oar (f) (i) = Var
s ∈ HExprn ::= x.s1 if s1 ∈ HExprn−1 and n ≥ 1

env ∈ Env ::= ∅ | b; env
where ; is associative and commutative

b ∈ Bind ::= x.s where s ∈ HExpr0

Figure 1: Syntax of LRS

variables,HExprwhich are higher-order expressions, Env represent-
ing letrec-environments, and Bind representing letrec-bindings. Ele-
ments s of HExpr have an order (s) ∈ N0, where HExprn denotes

the elements of HExpr of order n, and where HExpr0 = Expr.
Each f ∈ F has a syntactic type f : τ1 → · · · → τn → Expr,
where τi may be Var, or HExprki ; n is called the arity of f , de-
noted ar (f); and the order arity oar (f) is the n-tuple (δ1, . . . ,δn),
where δi = ki ∈ N0, or δi = Var, depending on the type of f . We

assume that {var, λ} ⊆ F where var : Var→ Expr lifts variables
to expressions with oar (var) = (Var), and oar (λ)=(1).

Example 2.2. The identity is written as λ(x.var x). Applications
can be represented by a symbol app with oar (app) = (0, 0).

Note that in a higher-order expression x.r, the scope of x is r.
The scope of x in letrec x.s; env in s′ is s, env and s′.

Definition 2.3. An LRS-expression satisfies the let variable con-
vention (LVC) iff a let-bound variable does not occur twice as a

binder in the same letrec-environment. With LV (env) we denote
the let-bound variables of env. i.e. all x with env = env′; x.s.

For instance, the expression letrec x.var x; x.var true in x does
not fulfill the LVC while letrec x.var x; y.var true in x does.

With the next definition we formally define the notion of an

α-renaming of an LRS-expression. It is insufficient to define such a

renaming as a mapping from variables to variables (and lifting it to

expressions), since for example, we want to rename the expression

λx.λx.var x into λx1.λx2.var x2 which shows that the renaming of

variable occurrences depends on their positions. For this reason,

we use a formal notion of positions of expressions:

Definition 2.4. Let < be a total order on variables. A position is a

sequence of natural numbers, where we use Dewey-notation for

the sequences. For (a higher-order) expression or a binding r that
satisfies the LVC, the positions of r, Pos(r), are inductively defined

as follows where w.l.o.g. we assume xi < xj for 1 ≤ i < j ≤ n:

Pos(x) := {ε }
Pos(f r1 . . . rn) := {ε } ∪

⋃n
i=1{i .p | p ∈ Pos(ri)}

Pos(letrec x1.s1; . . . ;xn .sn in t) :=
{ε } ∪

⋃n
i=1{i .p | p ∈ Pos(xi .si)} ∪ {(n+1).p | p ∈ Pos(t)}

Pos(x.r) := {ε, 1} ∪ {2.p | p ∈ Pos(r)}

For a position p ∈ Pos(r), we denote with r|p the term at po-
sition p, inductively defined by r|ε := r, x.r|1 := x, x.r|2.p :=

r|p , (letrec x1.s1; . . . ; xn .sn in t) |i .1 := xi for 1 ≤ i ≤ n, and
letrec x1.s1; . . . ; xn .sn in t) |i .2.p := si |p for 1 ≤ i ≤ n, and
(letrec x1.s1; . . . ; xn .sn in t) |n+1.p := t|p , and (f r1 . . . rn) |i .p :=

PPDP’17, October 9–11, 2017, Namur, Belgium David Sabel

ri |p for 1 ≤ i ≤ n. A position p is a variable position of r if r |p is a

variable, and it is a binder position iff p = q.1, and r |q is a higher-

order expression of order > 0 or a letrec-binding. For a construct r,
we denote withBPos(r) the binder positions of r. With BV (r) we de-
note the set of bound variables of r, i.e. BV (r) = {r|p | p ∈ BPos(r)}.

If r |p = x and p is not a binder position of r , the occurrence of
x at p is a bound or a free occurrence of x: if there exists a proper
prefix q′ of p such that either q = q′ or q = q′.i and r |q is a letrec-
expression such that r |q .1 = x and q.1 is a binder position, then x at
position p is a bound occurrence, otherwise it is a free occurrence. For
a bound occurrence of x at p, its corresponding binder is q.1 (written
binder (r ,p) = q.1) where q is maximal. The set of free variables of
r is FV (r) := {r|p | rp = x and x at position p is a free occurrence}.

We set Var (r) := FV (r) ∪ BV (r). For functions h, we denote by

Dom(h) its domain, by Cod(h) its co-domain, and (if the co-domain of

h consists of expressions), with VarCod(h) the variables appearing
in its co-domain, i.e. VarCod(h) =

⋃
{Var (h(U)) | U ∈ Dom(ρ)}.

For an expression r , an α-renaming A : BPos(r) → Var com-

putes a variable for each binder position where the following condi-

tion must hold: For each free occurrence of x at position p in r , there
does not exist a prefix q′ of p such that either q = q′ or q = q′.i and
r |q is a letrec-expression such that A(q.1) = x and q.1 is a binder
position. Application of A to r , written A(r), replaces each binder x
at binder position p by A(p) and consistently replaces each bound

occurrence of x which has p as corresponding binder by A(p). An
α-renaming A is a fresh α-renaming for r if Cod(A) ∩ Var (r) = ∅
and A(p) , A(p′) whenever p , p′.

The condition on α-renamings implies that the renaming cannot

capture free variables. For fresh α-renamings, it always holds.

Example 2.5. For expression s = λx.λx.var x, the positions of s
are Pos(s) = {ε, 1, 1.1, 1.2, 1.2.1, 1.2.1.1, 1.2.1.2, 1.2.1.2.1} and
s|1.2.1.1 = (x.λx.var x) |2.1.1 = (λx.var x) |1.1 = (x.var x) |1 = x|ε =
x. The positions 1.1, 1.2.1.1, 1.2.1.2.1 are variable positions where
BPos(s) = {1.1, 1.2.1.1} are binder positions, the occurrence of x at
position 1.2.1.2.1 is a bound occurrence where the corresponding

binder is 1.2.1.1. The α-renaming A = {1.1 7→ x1, 1.2.1.1 7→ x2}
is a fresh α-renaming for s and A(s) = λx1.λx2.var x2 while A′ =
{1.1 7→ y, 1.2.1.1 7→ y} is an α-renaming (which is not fresh for

s) such that A′(s) = λy.λy.var y. For s = λx.var y, the mapping

{1.1 7→ y} is not anα-renaming, since the condition onα-renamings

is violated for the free occurrence of y at position 1.2.1.

Applying a fresh α-renaming to an expression ensures that the

distinct variable convention
5
holds for the expression.

Definition 2.6. An expression s satisfies the distinct variable con-
vention (DVC) iff BV (s) ∩ FV (s) = ∅ and all binders bind different

variables.

A position p ∈ Pos(r) is an expression position iff r |p ∈ HExpr0.
Contexts are LRS-expressions where at one such position, the ex-

pression is replaced by the context hole [·]. We write d[s] for the
operation of filling the hole of context d by expression s. With

CV (d) we denote the set of variables x which are captured if they

are plugged into the hole of d, i.e. if the hole of d is at position p
then x ∈ CV (d) iff the occurrence of x at position p.1 in d[var x]

5
Sometimes called Barendregt’s variable convention.

is a bound occurrence. A context class K is non-binding if for all
contexts d of class K , CV (d) = ∅.

The following lemma expresses how to iteratively construct a

fresh α-renaming. In the lemma, ς represents a substitution that

maps variables to variables and applying ς to an LRS-expression
means to apply ς to all free variable occurrences.

Lemma 2.7. The following cases show how to construct a fresh
α-renaming from fresh α-renamings for the direct subexpressions:

(1) Let Ai be fresh α-renamings for si for i = 1, . . . ,n such that
Cod(Ai) ∩ Cod(Aj) = ∅ for all i , j. Let A′(i .p) := Ai (p) for
p ∈ Dom(Ai) and i = 1, . . . ,n. Then A′ is a fresh α-renaming
for (f s1 . . . sn) and A′(f s1 . . . sn) = f A1 (s1) . . .An (sn).

(2) Let A be a fresh α-renaming for s, y < {x} ∪ Cod(A), and ς =
{x 7→ y}. Let A′(1):=y and A′(2.p):=A(p) for all p ∈ Dom(A).
Then A′ is a fresh α-renaming for x.s such that the equation
A′(x.s)=y.(ς (A(s)) holds.

(3) Let Ai be fresh α-renamings for si for i = 1, . . . ,n+1, such
that Cod(Ai) ∩ Cod(Aj) = ∅ for all i , j, and such that
(
⋃

Cod(Ai) ∪
⋃

Var (si)) ∩ {y1, . . . , yn } = ∅.
Let ς =

⋃n
i {xi 7→ yi }, for 1 ≤ i ≤ n let A′(i .1) := yi , for

all p ∈ Dom(Ai) and 1 ≤ i ≤ n let A′(i .2.p) := Ai (p), and
for all p ∈ Dom(An+1) let A′(n+1.p) := An+1 (p). Then A′ is
a fresh α -renaming for letrec x1.s1; . . . ; xn .sn in sn+1, and
additionally we have A′(letrec x1.s1; . . . ; xn .sn in sn+1) =
letrec y1.ς (A1 (s1)); . . . ; yn .ς (An (sn)) in ς (An+1 (sn+1)).

(4) LetA be a fresh α -renaming for s andA′ be a fresh α -renaming
for d such that Cod(A) ∩ Cod(A′) = ∅, and p be the posi-
tion of the hole in d. Let A′′(p) := A(p) for p ∈ Dom(A) and
A′′(p.q) := A′(q) for q ∈ Dom(A′), and let ς = {x 7→ y | x ∈
CV (d), binder (d[x],p) = q.1 and A′(q.1) = y}. Then A′′ is a
fresh α-renaming for d[s] and A′′(d[s]) = A(d)[ς (A′(s))].

We define ∼let and ∼α . The relation ∼let extends syntactic equiv-

alence by treating letrec-environments as sets of bindings, and

∼α extends ∼let by allowing α-renaming:

Definition 2.8. LRS-expressions s1, s2 are α-equivalent, if there
exist fresh α-renamings Ai for si , such that A1 (s1) = A2 (s2). Let
∼let be the reflexive-transitive closure of permuting bindings in a

letrec-environment and ∼α (extended α -equivalence) be the reflex-
ive-transitive closure of combining ∼let and α-equivalence.

2.2 The Meta-Language LRSX
The language LRSX (see Fig. 2) extends LRS by meta-variables X
for variables, S for expressions, E for environments, and D for

contexts where cl (D) ∈ K denotes the context class of D. The
semantics of meta-variables X ,Y are all concrete variables of type

Var, expression variables S represent any ground expression of type
Expr, environment variables E represent all ground environments

of type Env, and a context variable D with cl (D) = K represents

all contexts of class K .

Definition 2.9. A meta-variable substitution ρ maps a finite set of

meta-variables to variables, expressions, environments, and con-

texts respecting their types and classes. We say ρ is ground iff it

maps all variables in Dom(ρ) to LRS-expressions.

Alpha-Renaming of Higher-Order Meta-Expressions PPDP’17, October 9–11, 2017, Namur, Belgium

x ,y, z ∈ Var ::= X | x
s, t ∈ HExpr0 ::= S | D[s] | letrec env in s | (f r1 . . . rar (f))

where ri ∈ HExprk if oar (f) (i) = k ≥ 0, and

ri ∈ Var, if oar (f) (i) = Var.
s ∈ HExprn ::= x .s1 if s1 ∈ HExprn−1 and n ≥ 1

env ∈ Env ::= ∅ | E; env | b; env
where ; is associative and commutative

b ∈ Bind ::= x .s where s ∈ HExpr0

Figure 2: Syntax of LRSX, where X , S,D,E are meta-variables.

We use the LVC, DVC, and ∼let also for LRSX-expressions where
the sets of variables include concrete variables as well as meta-

variables representing concrete variables. We also use BV (·), FV (·),
Var (·), and LV (·) on the extended syntax. With MV (s) we denote
the set of meta-variables occurring in s .

Definition 2.10. A constrained LRSX-expression (s,∆) consists of
an LRSX-expression s and a constraint tuple ∆ = (∆1,∆2,∆3) such
that ∆1 is a finite set of context variables, called non-empty context
constraints; ∆2 is a finite set of environment variables, called non-
empty environment constraints; and ∆3 is a finite set of pairs (t ,d)
where t is an LRSX-expression and d is an LRSX-context, called
non-capture constraints (NCCs, for short). A ground substitution

ρ satisfies ∆ iff ρ (D) , [·] for all D ∈ ∆1; ρ (E) , ∅ for all E ∈ ∆2;

and Var (ρ (t)) ∩ CV (ρ (d)) = ∅ for all (t ,d) ∈ ∆3. If there exists a

ground substitution ρ that satisfies ∆, then we say ∆ is satisfiable.
The set of concretizations of a constrained LRSX-expression (s,∆)
is: γ (s,∆) := {ρ (s) | ρ is ground, ρ (s) fulfills the LVC, ρ satisfies ∆}
For an LRSX-expression s , we define γ (s) = γ (s, (∅, ∅, ∅)).

Example 2.11. For ∆ = (∅,∆2,∆3) with ∆2 = {E1,E2}, and
∆3 = {(letrec E1 in c, letrec E2 in [·])}, the constrained ex-

pression (letrec E1 in letrec E2 in S,∆) represents all LRS-
expressions that are nested letrec-expressions where both letrec-
environments are non-empty and the let-variables of the inner envi-

ronment are distinct from all variables occurring in the outer envi-

ronment. An example that requires a non-empty context constraint

is the following rule from the calculus Lneed [31] which copies an

abstraction into a needed position in a letrec-environment:

letrecE;X .λW .S ;Y .D1[varX] inD[varY]
→ letrecE;X .λW .S ;Y .D1[λW .S] inD[varY].

If D1 is empty, then the target of the copy operation should be the

variable Y in D[varY]. Thus the case D1 = [·] should be excluded

which can be expressed by setting ∆1 = {D1}.

3 α-RENAMING OF META-EXPRESSIONS
3.1 The Language LRSXα
While for ground expressions, α-renaming is a well-known task,

our setting is different. We want to apply α-renaming to the meta-

expressions of LRSX, which cannot be computed for meta-variables

until they are instantiated and become concrete expressions. Hence

we have to introduce extra symbols and constructs to represent

ξU ∈SAR ::= ⟨⟩ | αU ,i : η
η ∈ RS ::= ⟨rc1, . . . , rcn⟩, n ≥ 0

rc ∈ RC ::= {arc1, . . . ,arcm },m ≥ 0

arc ∈ ARC ::= αx,i | LV (αE,i) | CV (αD,i)
For renaming sequences η ∈ RS we also use list-notation, writing

rc : η′ where rc is the head and η′ the tail. The index i in atomic

renaming components arc ∈ ARC is used for uniquification.

Figure 3: Symbolic α-renamings

x ,y, z ∈ Var ::= η·X | η·x
s, t ∈ HExpr0 ::= ξS ·S | ξD ·D[s] | letrec env in s | (f r1 . . . rar (f))

where ri ∈ HExprk if oar (f) (i) = k ≥ 0, and

ri ∈ Var, if oar (f) (i) = Var.
s ∈ HExprn ::= x .s1 if s1 ∈ HExprn−1 and n ≥ 1

env ∈ Env ::= ∅ | ξE ·E; env | b; env
where ; is associative and commutative

b ∈ Bind ::= x .s where s ∈ HExpr0

Figure 4: Syntax of LRSXα

the symbolic renaming. Thus, we extend LRSX such that meta-

variables S,D,E,X and variables x come with an additional sym-

bolic α-renaming, written as ξ ·S , ξ ·D, ξ ·E, η·X , or η·x, respectively6.

Definition 3.1. The syntax of symbolic α -renamings ξ and renam-

ing sequences η is defined by the grammar given in Fig. 3.

A renaming sequence η ∈ RS is a sequence of renaming compo-

nents. We use list notation and write both ⟨rc1, . . . , rcn⟩ represent-
ing all elements of the sequence in order as well as rc : η to split a

sequence into its head rc and tail η. A renaming component rc ∈ RC
is a set of atomic renaming components. An atomic renaming com-
ponent arc ∈ ARC is a symbolCV (αD,i) for a context meta-variable

D, or a symbol LV (αE,i) and an environment meta-variable E, or
a symbol αx,i where x is a concrete variable x or a meta-variable

X for variables. For expression, context, and environment meta-

variables U , a symbolic α-renaming ξU ∈ SAR is either empty or a

sequence αU ,i : η, and for variablesX or x it is a renaming sequence

η. As abbreviation, we sometimes write c instead of ⟨c⟩ or {c} and
⟨c1, . . . , cn⟩++⟨cn+1, . . . , cm⟩ means ⟨c1, . . . , cm⟩.

The language LRSXα (see Fig. 4) extends the syntax of LRSX by
adding symbolic α-renamings ξ to each occurrence of expression,

environment and context meta-variables and renaming sequences η
to all occurrences of concrete variables x or variable meta-variables

X . A constrained LRSXα-expression is a pair (s,∆) where s is an

LRSXα-expression and ∆ = (∆1,∆2,∆3) is a constraint tuple, such
that ∆1 is a set of context variables, ∆2 is a set of environment vari-

ables, and ∆3 is a set of pairs (t ,d) where t is an LRSXα-expression
and d is an LRSXα-context.

We informally explain the meaning of symbolic α-renamings.

Let ρ be a ground substitution. Component αU ,i represents a fresh

α-renaming of expression ρ (U) where the parameter i is required
for uniquification, since there may be several fresh renamings for

6
Note that this notation is similar and also related to the notation of suspensions π ·X
in nominal syntax (see e.g. [33]).

PPDP’17, October 9–11, 2017, Namur, Belgium David Sabel

the meta-variableU . Note that αU ,i can only occur as the first com-

ponent of a sequence of renamings applied toU . Components αx,i
represent fresh renamings of variable ρ (x). Component CV (αD,i)
represents the restriction of αD,i to those bound variables of ρ (D)
which affect the context hole. Component LV (αE,i) represents the
restriction of αE,i to the let-variables of ρ (E). Sets of renamings

are composed renamings where the order is irrelevant, while in se-

quences of renamings, the order is relevant (they have to be applied

from left to right). Sets and sequences of symbolic α-renamings

induce a notion of equivalence of symbolic α-renamings:

Definition 3.2. The relation ≈ is the smallest equivalence rela-

tion satisfying: c ≈ c for c = αU ,i or an atomic renaming compo-

nent c; ⟨rc1, . . . , rcn⟩ ≈ ⟨rc
′
1
, . . . , rc ′n⟩ if rci ≈ rc ′i for i = 1, . . . ,n;

⟨rc1, . . ., rci−1, {}, rci+1, . . ., rcn⟩ ≈ ⟨rc1, . . ., rci−1, rci+1, . . ., rcn⟩;
and if there exists a permutation π on {1, . . . ,n} such that arci ≈
arc ′π (i) then {arc1, . . . ,arcn } ≈ {arc

′
1
, . . . ,arc ′n }.

We do not distinguish symbolic α-renamings up to ≈. To embed

LRSX-expressions into LRSXα , we identify ⟨⟩·U with U and let ϵ :

LRSXα → LRSX be the mapping that erases all renamings.

We introduce well-formedness of LRSXα-expressions, which re-

quires that in sets of renaming components there is at most one

renaming component for each meta-variable or variable:

Definition 3.3. An LRSXα-expression s is well-formed iff s does
not have a renaming sequence which contains a set rc of atomic

renaming components, such that αx,i ,αx, j ∈ rc for some x and

some i , j , or LV (αE,i),LV (αE, j) ∈ rc for some E and some i , j , or
CV (αD,i),CV (αD, j) ∈ rc for some D and some i , j . A constrained

LRSXα-expression (s,∆) is well-formed, iff s is well-formed and for

all (t ,d) ∈ ∆3 the expression t and the context d are well-formed.

We define the formal semantics of symbolic α-renamings.

Definition 3.4. Let (s,∆) be a well-formed, constrained LRSXα-
expression and ρ be a ground substitution with Dom(ρ) = MV (s) ∪
MV (∆) such that ρ (ϵ (s)) fulfills the LVC. A ground and fresh α-
renaming for s and ρ is a function τ such that

• for all expression, context, and environment meta-variab-

les U with U ∈ MV (s), τ maps αU ,i to a fresh α-renaming

τ (αU ,i) = AU ,i for ρ (U);
• for all variablesX , τ (αX ,i) is the substitution {ρ (X) 7→ yX ,i }

and τ (αx,i) is the substitution {x 7→ yx,i };
• for each environment meta-variable E, with τ (αE,i) = AE,i
and ρ (E) = x1.s1; . . . ; xn .sn , τ (LV (αE,i)) is the substitution
{xj 7→ AE,i (j .1) | j = 1, . . .n};

• for each context variableD, with τ (αD,i) = AD,i and ρ (D) =
d where p is the position of the hole in d, and AD,i (d) =
d′, τ (CV (αD,i)) is the substitution induced by τ between

CV (d) and CV (d′), i.e. τ (CV (αD,i)) = {x 7→ x′ | x ∈
CV (d), binder (d[x],p) = q.1 and AD,i (q.1) = x′};
• τ (⟨c1, . . . , cn⟩) is the composition

7 τ (cn) ◦ · · · ◦ τ (c1);
• τ ({c1, . . . , cn }) = τ (cn) ◦ · · · ◦ τ (c1) such that for any per-

mutation on {1, . . . ,n} the equation τ (cn) ◦ · · · ◦ τ (c1) =
τ (cπ (n)) ◦ · · · ◦ τ (cπ (1)) holds

8

7
We write f ◦ д for the composition defined by (f ◦ д) (x) = f (д (x))

8
Note that this excludes such τ which are not invariant w.r.t. permutations.

and such that all co-domains are fresh and pairwise disjoint, that

is Cod(AU ,i) ∩ Cod(AU ′,i′) = ∅ for i , i ′ or U , U ′, Cod(AU ,i) ∩
Cod(τ (αx, j)) = ∅, Cod(τ (αx,i)) ∩ Cod(τ (αx ′,i′)) = ∅ for i , i ′ or
x , x ′, Cod(AU ,i) ∩ VarCod(ρ) = ∅, Cod(αx,i) ∩ VarCod(ρ) = ∅,
Cod(AU ,i) ∩ Cod(τ (αx, j)) = ∅;

Applying τ and ρ to s and ∆ first replaces every occurrence

ξU ·U in s by ξU ·ρ (U) and then replaces ξU by the corresponding

substitution or α-renaming, i.e. by τ (ξU) (ρ (U)) or τ (η) (ρ (x)). For
a constrained LRSXα-expression (s,∆), the concretizations are:

γ (s,∆) :=


τ (ρ (s))

ρ is a ground substitution for s,∆ such that

ρ (s) fulfills the LVC, τ is a ground and fresh

α-renaming for s,∆, ρ and τ ◦ ρ satisfies ∆




For LRSXα-expressions s , we define γ (s) = γ (s, (∅, ∅, ∅)).

We use ∼let also for LRSXα-expressions where we allow permuta-

tion of bindings and environment variables and also allow to apply

≈ to α-renamings.

3.2 Performing Symbolic Alpha-Renaming
We define introduction of symbolic α-renamings, i.e. how to trans-

form an LRSX-expression s into an LRSXα-expression s ′, such that

the instances of s ′ are α-renamed copies of the instances of s (which
are LRS-expressions). The algorithm to symbolically α-rename s ,
first α-renames all proper subexpressions of s and then introduces

a renaming for s , which is moved downwards, since it may affect

occurrences of free variables in the subexpressions.

Definition 3.5. Let s be an LRSX-expression. The function AR(s)
(using the auxiliary function sift shown in Fig. 5) computes an

LRSXα-expression for s . For a constrained LRSX-expression (s,∆),
we compute a symbolically α-renamed expression as (AR(s),∆).

Example 3.6. We α-rename the expression λX .λX .var X :

AR(λX .λX .var X) = λAR(X .λX .var X)
= λαX ,1·X .sift (αX ,1,AR(λX .var X))
= λαX ,1·X .sift (αX ,1, λαX ,2·X .sift (αX ,2, var ⟨⟩·X))
= λαX ,1·X .sift (αX ,1, λαX ,2·X .var αX ,2·X)
= λαX ,1·X .λαX ,2·X .var ⟨αX ,2,αX ,1⟩·X)

Note that the renaming component αX ,1 in ⟨αX ,2,αX ,1⟩·X can be

omitted, since the renaming component αX ,2 is applied first and

renames all occurrences of (instances of) X . We will focus on such

simplifications of symbolic α-renamings in the subsequent section.

As a further example, we consider the symbolic α-renaming of

the expression letrec E1;E2;E3 in letrec E4 in S :

AR(letrec E1;E2;E3 in letrec E4 in S) =
letrec ⟨αE1,1, {LV (αE2,1), LV (αE3,1)}⟩·E1;

⟨αE2,1, {LV (αE1,1), LV (αE3,1)}⟩·E2;
⟨αE3,1, {LV (αE1,1), LV (αE2,1)}⟩·E3;

in letrec ⟨αE4,1, {LV (αE1,1), LV (αE2,1), LV (αE3,1)}⟩·E4;
in ⟨αS,1, LV (αE4,1), {LV (αE1,1), LV (αE2,1), LV (αE3,1)}⟩·S

In this example no further simplification of the symbolic renamings

is possible. However, if we assume that there are non-capture con-

straints (letrec Ei in c, letrec Ej in [·]) for all i , j ∈ {1, 2, 3, 4},
then in any instance the let-variables of Ei do not bind variables of

Alpha-Renaming of Higher-Order Meta-Expressions PPDP’17, October 9–11, 2017, Namur, Belgium

AR(x) = ⟨⟩·x
AR(S) = αS,i ·S
AR(D[s]) = αD, j ·D[sift (CV (αD, j),AR(s))]
AR(f s1 . . . sn) = f AR(s1) . . .AR(sn)
AR(x .s) = αx,i ·x .sift (⟨αx,i ⟩,AR(s))
AR(letrec x1.s1; . . . ;xm .sm ;E1; . . . ;En in s)

= letrec αx1,i1 ·x1.sift (η,AR(s1));
. . . ;

αxm,im ·xm .sift (η,AR(sm));
⟨αE1, j1 ,η1⟩·E1; . . . ; ⟨αEn, jn ,ηn⟩·En

in sift (η,AR(s))
where η = (

⋃m
k=1{αxk ,ik }) ∪ (

⋃n
k=1{LV (αEk , jk)})

and ηk = η \ LV (αEk ,ik)

sift (η,x .s) = x .sift (η, s)
sift (η, f s1 . . . sn) = f sift (η, s1) . . . sift (η, sn)
sift (η,η′·S) = (η′ ++η)·S
sift (η,η′·D[s]) = (η′ ++η)·D[sift (η, s)]
sift (η, letrec z1.s1;. . .;zm .sm ;η1·E1;. . .;ηn ·En in s)

= letrec z1.sift (η, s1); . . . ; zm .sift (η, sm);
(η1 ++η)·E1; . . . ; (ηn ++η)·En

in sift (η, s)
sift (η,η′·x) = (η′ ++η)·x

For LRSX-expression s , AR(s) computes a symbolically α-renamed

LRSXα-expression. Here allαU ,i on right hand sides of equations are

assumed to be fresh and pairwise distinct, which can be guaranteed

for instance, by using a global counter.

Figure 5: Adding symbolic α-renamings

Ej and thus the LRSXα-expression could be simplified to

letrec ⟨αE1,1⟩·E1; ⟨αE2,1⟩·E2; ⟨αE3,1⟩·E3; in
letrec ⟨αE4,1⟩·E4 in

⟨αS,1, LV (αE4,1), {LV (αE1,1), LV (αE2,1), LV (αE3,1)}⟩·S

The simplification algorithm in the subsequent section will infer

those simplifications.

Lemma 3.7. If LRSX-expression s fulfills the LVC and it does not
contain an environment variable E twice in the same environment,
then AR(s) is well-formed.

The construction of the symbolic α-renaming and the semantics

of symbolic α-renamings together with Lemma 2.7 imply:

Proposition 3.8. Let s be an LRSX-expression and s ′ = AR(s).
Then for each t ∈ γ (s), there exists t′ ∈ γ (s ′) such that t ∼α t′ and
for each t′ ∈ γ (s ′) there exists t ∈ γ (s) such that t ∼α t′. Furthermore
all t′ ∈ γ (s ′) fulfill the DVC.

4 SIMPLIFICATION OF α-RENAMINGS
The goal of this section is to define a sound mechanism to sim-

plify symbolic α-renamings. Hence, we present an inference sys-

tem which performs such a simplification and subsequently we

show correctness of the system, i.e. simplification of symbolic α-
renamings does not change the set of concretizations.

As a preparation we first consider a preprocessing step of non-

capture constraints, i.e. we compute so-called atomic NCCs which

VarM (η·x) = {η·x } VarM (η·x .s) = {η·x } ∪ VarM (s)
VarM (ξ ·S) = {ξ ·S } VarM (f s1 . . . sn) =

⋃
i VarM (si)

VarM (ξ ·D[s]) = {ξ ·D} ∪ VarM (s)
VarM (letrec env in s) = VarM (env) ∪ VarM (s)

VarM (env) ={ξ ·E | ξ ·E; env ′ = env}
∪
⋃
{{η·z} ∪ VarM (s) | η·z.s; env ′ = env}

CVM (η·x) = ∅ CVM (ξ ·D[d]) = CVM (ξ ·D)∪CVM (d)
CVM (ξ ·S) = ∅ CVM (η·x .d) = {η·x }∪CVM (d) CVM ([·]) = ∅
CVM (ξ ·D) = ∅, if cl (D) is non-capturing
CVM (ξ ·D) = {ξ ·D}, otherwise
CVM (f s1 . . . d . . . sn) = CVM (d)
CVM (letrec env ind) = CVM (env)∪CVM (d)
CVM (letrecη·z.d ;env in s) = CVM (env)∪{η·z}∪CVM (d)

CVM (env) ={ξ ·E | ξ ·E;env′=env} ∪ {η·z | η·z.s;env′=env}

Figure 6: The functions VarM and CVM

are pairs (u,v) where u and v are of the form ξ ·U . For a set S of

NCCs, the function split
NCC

is defined by

split
NCC
(S) :=

⋃
(s,d)∈S

{(u,v) | u ∈ VarM (s),v ∈ CVM (d)}

where the functions VarM , and CVM are shown in Fig. 6. VarM
computes the variables and meta-variables (together with their

symbolic alpha-renaming) of a meta-expression and CVM collects

all variables and meta-variables (together with their symbolic alpha-

renaming) which may capture variables if plugged into the con-

text hole. E.g., we have VarM (λX .app (var y) S) = {X , y, S } and
CVM (D1[D2[λX .app [·] y]]) = {D1,X } provided that cl (D2) is non-
capturing, while cl (D1) is capturing. Computation of VarM and

CVM implies:

Lemma 4.1. Let (s,d) be an NCC, ρ be a ground substitution, and
τ be a ground and fresh α-renaming for s,d, ρ.

Then the following equations hold:

Var (τ (ρ (s))) = {Var (τ (ρ (u))) | u ∈ VarM (s)}
CV (τ (ρ (d))) = {τ (ρ (η·x)) | η·x ∈ CVM (d)}

∪{LV (τ (ρ (ξ ·E))) | ξ ·E ∈ CVM (d)}
∪{CV (τ (ρ (ξ ·D))) | ξ ·D ∈ CVM (d)}

As a further preparation for simplification, we define two kinds

of relationships between symbolic renamings. Roughly speaking, a

renaming sequence η1 is an instance of η2 if in η1 compared to η2
some sets of renaming components {arc1, . . . ,arcn } are partly or-

dered, e.g. replaced by sequences ⟨rc1, . . . , rcm⟩ such that

⋃
i rci =

{arc1, . . . ,arcn } and rci ∩ rc j = ∅ for i , j. Furthermore, η1 is a
weak instance of η2 if it is an instance after forgetting about the

concrete indexes i in αU ,i , CV (αD,i), and LV (αE,i).

Definition 4.2. The relation =num identifies renaming compo-

nents and sequences up to the number i in αU ,i , it is defined by

αU ,i =num αU , j , where U may be E,D, S,X , x, CV (αD,i) =num
CV (αD, j), LV (αE,i) =num LV (αE, j). We extend =num to renam-

ing sequences ξU and η in the obvious way. A renaming η1 is an
instance of a renaming η2 if

• η1 = η2, or
• η1 = rc1 : η

′
1
, η2 = rc2 : η

′
2
, rc1 ⊆ rc2, and η

′
1
is an instance

of (rc2 \ rc1) : η
′
2
.

PPDP’17, October 9–11, 2017, Namur, Belgium David Sabel

(IdU)
ξ ·U |=∆ ξ ·U

(TrU)
ξ1·U |=∆ ξ2·U and ξ2·U |=∆ ξ3·U

ξ1·U |=∆ ξ3·U
(SimU)

{VAR(U),COD(αU ,i)},η ⊢∆ η′

αU ,i : η·U |=∆ αU ,i : η
′·U

U , x

(IdX)
η·x |=∆ η·x

(TrX)
η1·x |=∆ η2·x and η2·x |=∆ η3·x

η1·x |=∆ η3·x
(SimX)

{x },η ⊢∆ η′

η·x |=∆ η′·x
(SubstX)

ξ ·x |=∆ (({αx,i } ·∪rc) : η)·x

ξ ·x |=∆ ⟨αx,i ⟩·x

(RemDup)
arc =num arc ′ or (arc = αU ,i and arc

′ ∈ {LV (αU , j),CV (αU , j)})

η1 ++(arc ·∪rc):η2 ++(arc
′ ·∪rc ′):η3·U |=∆ η1 ++(arc ·∪rc):η2 ++ rc

′
:η3·U

(SimNCCU)
(ξU ·U ,x) ∈ splitNCC (∆3), ξ

′
U is a weak instance of ξU

ξ ′U ++{αx,i } ·∪rc : η2·U |=∆ ξ ′U ++ rc : η2·U
U , y (SimNCCX)

(η·y,x) ∈ split
NCC
(∆3),η

′
is a weak instance of η

η′ ++{αx,i } ·∪rc : η2·y |=∆ η′ ++ rc : η2·y

(a) Judgments ξ ·U |=∆ ξ ′ ·U and η ·x |=∆ η′ ·x mean that LRSXα -expression ξ ·U (η ·x , resp.) can be simplified to ξ ′ ·U (η′ ·x , resp.).

(RMarc)
∀v ∈ V :arc -∆ v V , rc:η ⊢∆ rc:η′

V , ({arc} ·∪rc):η ⊢∆ rc:η′
(IdEta)

V ,η ⊢∆ η
(Order)

V , ⟨arci : {arc1, . . . ,arci−1,arci+1, . . . ,arcn } : η ⊢∆ η′

V , {arc1, . . . ,arcn } : η ⊢∆ η′

(Parc)
V∪{COD(arc) | arc ∈ rc},η ⊢∆ η′

V , rc : η ⊢∆ rc : η′
(MSet)

∀i , j : xi , x j ∧ αxi ,ki -∆ x j and V ,η1 ++{αx1,k1 , . . . ,αxn,kn }:η2 ⊢∆ η3

V ,η1 ++⟨αx1,k1 , . . . ,αxn,kn ⟩++η2 ⊢∆ η3

(b) Judgment V , η ⊢∆ η′ means that for the variables represented by V , η can be simplified to η′

(Cod)
arc1 -∆ COD(arc2)

(EmCV)
cl (D) is non-binding

CV (αD,i) -∆ v
(NccDU)

(U ,D) ∈ split
NCC
(∆3)

CV (αD,i) -∆ VAR(U)
(NccDX)

(x ,D) ∈ split
NCC
(∆3)

CV (αD,i) -∆ x

(NccEU)
(U ,E) ∈ split

NCC
(∆3)

LV (αE,i) -∆ VAR(U)
(NccEX)

(x ,E) ∈ split
NCC
(∆3)

LV (αE,i) -∆ x
(NccUX)

(U ,x) ∈ split
NCC
(∆3)

αx,i -∆ VAR(U)

(NccXX)
(x ,x ′ are concrete variables and x , x) ∨ {(x ′,x), (x ,x ′)} ∩ split

NCC
(∆3) , ∅

αx,i -∆ x ′

(c) The predicate arc -∆ v holds iff arc cannot rename the variables represented by v

Figure 7: Simplification of symbolic α-renamings

A renaming η1 is a weak instance of a renaming η2 if

• η1 is an instance of η2, or
• η1 = rc1 : η′

1
, η2 = rc2 : η′

2
, rc1 ⊆w rc2, and η′

1
is a weak

instance of (rc2 \ rc1) : η
′
2
. Here rc1 ⊆w rc2 holds if for all

arc ∈ rc1 there exists an arc ′ ∈ rc2 with arc =num arc ′.

Example 4.3. As an example we consider the symbolic renam-

ing ⟨αS,1,CV (αD2,1), {CV (αD1,1), LV (αE1,1)}, LV (αE2,1)⟩. It is an
instance of ⟨αS,1, {CV (αD1,1),CV (αD2,1), LV (αE1,1)}, LV (αE2,1)⟩.

The weak instance relation additionally allows one to switch be-

tween the copies of atomic renaming components, and thus e.g. the

renaming ⟨αS,1,CV (αD2,2), {CV (αD1,1), LV (αE1,2)}, LV (αE2,1)⟩ is
not an instance but a weak instance of the symbolic renaming

⟨αS,1, {CV (αD1,1),CV (αD2,1), LV (αE1,1)}, LV (αE2,1)⟩.

Definition 4.4. We consider formal expressions of the form x ,
VAR(U), and COD(arc), which we call symbolic set-variables, and
let V be a set of such formal expressions. With MV (V) we denote
the meta-variables occurring in V (i.e. U in VAR(U) and all meta-

variables occurring as index of some arc in COD(arc)). For a set
MV of meta-variables with MV ⊆ MV (V), a ground substitution

ρ for MV and a ground α-renaming τ for ρ and MV , we define

τ (ρ (V)) :=
⋃
v ∈V τ (ρ (v)) where τ (ρ (VAR(U)))) := Var (ρ (U)),

τ (ρ (x)) = {ρ (x)}, and τ (ρ (COD(arc))) = Cod(τ (arc)).

Simplification removes renaming components if they cannot

affect (instances of) the corresponding meta symbol. Information

is gathered from the renamings and from the NCCs in ∆3.

Definition 4.5 (Simplification). The simplification relation |=∆ is

defined by the inference rules in Fig. 7 (a). In the premises some of

the rules use setsV of symbolic set-variables occurring in judgments

V ,η |=∆ η′ which are defined by the rules shown in Fig. 7 (b) and

the predicate arc -∆ v which is defined in Fig. 7 (c).

Note that in the presented form, the inference system is non-

deterministic and does not necessarily have unique normal forms.

Our implementation (see Section 6) uses the following strategy:

It applies rules (Order) and (MSet) as late as possible, and for in-

stance for rule (Order) it tries all possible orderings and heuristically
chooses the most-simplified result. We leave the development of a

normalizing system as future work.

Definition 4.6. Let (s,∆) be a constrained LRSXα-expression. The
simplification algorithm replaces occurrences ξ ·U (η·x , resp.) in
s by ξ ′·U (η′·x , resp.) if ξ ·U |=∆ ξ ′·U (η·x |=∆ η′·x , resp.) can be

inferred (see Definition 4.5).

Axioms (IdU), (IdX), and (IdEta) allow one to keep the renam-

ing and rules (TrU) and (TrX) enable transitivity of simplification.

Rule (RemDup) removes a duplicated renaming component in a

Alpha-Renaming of Higher-Order Meta-Expressions PPDP’17, October 9–11, 2017, Namur, Belgium

sequence. Rule (SubstX) removes further renaming components

for a renaming for x if the first component includes αx,i . Rule
(SimX) performs simplification of symbolic α-renamings applied

to x- or X -variables, where the symbolic set of variables in the

premise is the singleton containing the to-be-simplified variable.

Rule (SimU) perform simplification for meta-variablesU which are

not X -variables. Hence the α-renaming starts with αU ,i and the

symbolic set of variables consists of VAR(U) and the co-domain of

αU ,i . Rules (SimNCCU) and (SimNCCX) allow one to remove a com-

ponent αx,i if an NCC ensures that x cannot occur in ξ ′U ·U or η′·y,
resp. Rule (RMarc) removes the first atomic renaming component

of a sequence of components provided that it cannot rename any

variable represented by the symbolic set of variables. Rule (Parc)
processes the first renaming component in a sequence, by adding

the co-domain of the component to the symbolic set of variables,

and then proceeds with the tail of the sequence. Rule (Order) al-
lows one to order a set of atomic renaming components for further

simplification, rule (MSet) allows one to transform a sequence of

atomic renaming components αxi , ji into a set of components pro-

vided that it is guaranteed that the ground instances of all variables

xi are pairwise different. The predicate -∆ is defined in Fig. 7 (c)

where arc -∆ v expresses that atomic renaming component arc
cannot rename the set of variables represented by v . The rules use
the NCCs or some other easy fact to ensure that the property holds.

Example 4.7. We reconsider the expressions from Example 3.6. If

we apply the simplification algorithm to the constrained expression

(λαX ,1·X .λαX ,2·X .var ⟨αX ,2,αX ,1⟩·X , (∅, ∅, ∅)) then it results in

(λαX ,1·X .λαX ,2·X .var ⟨αX ,2⟩·X , (∅, ∅, ∅)), since

(SubstX)

(IdX)
⟨αX ,2,αX ,1⟩·X |=∆ ⟨αX ,2,αX ,1⟩·X

⟨αX ,2,αX ,1⟩·X |=∆ ⟨αX ,2⟩·X

As a further example, consider (s,∆) = (s, (∅,∆2,∆3)) with

s = letrec ⟨αE1,1, {LV (αE2,1), LV (αE3,1)}⟩·E1;
⟨αE2,1, {LV (αE1,1), LV (αE3,1)}⟩·E2;
⟨αE3,1, {LV (αE1,1), LV (αE2,1)}⟩·E3;

in letrec ⟨αE4,1, {LV (αE1,1), LV (αE2,1), LV (αE3,1)}⟩·E4;
in ⟨αS,1, LV (αE4,1), {LV (αE1,1), LV (αE2,1), LV (αE3,1)}⟩·S

∆2 = {E1,E2,E3,E4}
∆3 = {(letrec Ei in c, letrec Ej in [·]) | i, j ∈ {1, 2, 3, 4}, i , j}

Applying the simplification algorithm results in (s ′,∆) with

s ′ = letrec ⟨αE1,1⟩·E1; ⟨αE2,1⟩·E2; ⟨αE3,1⟩·E3; in
letrec ⟨αE4,1⟩·E4 in
⟨αS,1, LV (αE4,1), {LV (αE1,1), LV (αE2,1), LV (αE3,1)}⟩·S

since ⟨αEi ,1, {LV (αEj ,1), LV (αEk ,1)}⟩·Ei |=∆ ⟨αEi ,1⟩·Ei can be de-

rived for all i, j,k with {i, j,k } = {1, 2, 3} (see Fig. 8).

Proposition 4.8. Let M be a set of meta-variables, ∆ be a con-
straint tuple with MV (∆) ⊆ M , ρ be ground substitution forM , and
τ be a ground α-renaming for ρ andM , such that ρ and τ satisfy ∆.

(1) (Correctness of -∆) Letv be a symbolic set-variable and arc be
an atomic renaming component overM , such that arc -∆ v .
Then for all x ∈ τ (ρ (v)), the identity τ (arc) (x) = x holds.

(2) (Correctness of ⊢∆) LetV be a set of symbolic set-variables and
η be a sequence of renaming components with components over
M , such that V ,η ⊢∆ η′. Then for each x ∈ τ (ρ (V)), we have
τ (η) (x) = τ (η′) (x).

(3) (Correctness of |=∆)
(a) Let η and η′ be symbolic α -renamings with components over

M , such that η·x |=∆ η′·x . Then the equation τ (η) (ρ (x)) =
τ (η′) (ρ (x)) holds.

(b) Let ξ and ξ ′ be symbolic α-renamings with components
over M , and let U ∈ M such that ξ ·U |=∆ ξ ′·U . Then the
equation τ (ξ) (ρ (U)) = τ (ξ ′) (ρ (U)) holds.

Applying the previous proposition for all occurrences η·x and

ξ ·U which are transformed by the simplification algorithm shows:

Theorem 4.9. The simplification algorithm does not change the
set of concretizations, i.e. for a constrained LRSXα-expression (s,∆)
such that s fulfills the LVC and s does not contain an environment
variable twice in the same environment, the simplified expression
(s ′,∆), we have γ (s,∆) = γ (s ′,∆).

5 ALGORITHMS FOR LRSXα-EXPRESSIONS
We show how to rewrite LRSXα-expressions by matching LRSXα-
expressions and by refreshing the α-renaming to guarantee that

the distinct variable convention holds after applying a rewrite step.

We finally present an algorithm to test extended α-equivalence of
LRSXα-expressions which, for instance, is necessary during diagram
computation to check whether a diagram is closed.

5.1 Rewriting Meta-Expressions
Meta letrec rewrite rules (see [26]) are rewrite rules of the form

ℓ →∆ r where ℓ and r are LRSX-expressions and ∆ is a constraint

tuple. Applying a rewrite rule to a constrained expression (s,∇)
consists of matching ℓ against s such that the constraints in ∇ imply

the constraints in ∆. Given a matcher (i.e. a substitution σ with

σ (ℓ) ∼let s) the reduction is s → σ (r) (or more precisely (s,∇) →
(σ (r),∇ ∪ σ (∆))). In [26] the letrec matching problem was defined

and analyzed for LRSX-expressions. However, as argued before,

often transformations are not applicable, since ∇ does not imply ∆
(see the example for an (llet) overlap in Sect. 1). Here α-renaming

of s often helps to satisfy the constraints. Hence, we formulate

an adapted form of a letrec matching problem where (s,∇) is a
constrained LRSXα-expression. Our matching equations are of the

form ℓ ⊴ s where s is a meta-expression with instantiable meta-
variables and ℓ is meta-expression with meta-variables that act like

constants. In addition ℓ may contain symbolic α-renamings (i.e. ℓ is

an LRSXα-expression), but s is an LRSX-expression. To distinguish

the meta-variables we use blue font for instantiable meta-variables

and red font and underlining for fixed meta-variables. WithMVI (·)
andMVF (·) we denote functions to compute the sets of instantiable

and fixed meta-variables.

Definition 5.1. A letrec matching problem with α-renamed ex-
pressions is a tuple P = (Γ,∆,∇) where Γ is a set of matching

equations s ⊴ t such that s is an LRSX-expression, t is an LRSXα-
expression, MVI (t) = ∅; ∆ = (∆1,∆2,∆3) is a constraint tuple over
LRSX, called needed constraints; ∇ = (∇1,∇2,∇3) is a constraint

tuple over LRSXα , called given constraints, where MVI (∇i) = ∅ for

PPDP’17, October 9–11, 2017, Namur, Belgium David Sabel

(SimU)

(Order)

(RMarc)

(NccEU)
(Ei ,Ej) ∈ splitNCC (∆3)

LV (αEj ,1) -∆ VAR(Ei)
(Cod)

LV (αEj ,1) -∆ COD(αEi ,1)
(RMarc)

(NccEU)
(Ei ,Ek) ∈ splitNCC (∆3)

LV (αEk ,1) -∆ VAR(Ei)
(Cod)

LV (αEk ,1) -∆ COD(αEi ,1)
(IdEta)

{VAR(Ei),COD(αEi ,1)}, ⟨⟩ ⊢∆ ⟨⟩

{VAR(Ei),COD(αEi ,1)}, ⟨LV (αEk ,1)⟩ ⊢∆ ⟨⟩

{VAR(Ei),COD(αEi ,1)}, ⟨LV (αEj ,1), LV (αEk ,1)⟩ ⊢∆ ⟨⟩

{VAR(Ei),COD(αEi ,1)}, {LV (αEj ,1), LV (αEk ,1)} ⊢∆ ⟨⟩

⟨αEi ,1, {LV (αEj ,1), LV (αEk ,1)}⟩·Ei |=∆ ⟨αEi ,1⟩·Ei

Figure 8: Derivation for Example 4.7

i = 1, 2, 3 and ∇ is satisfiable; and for all expressions in Γ, the LVC
must hold. The following occurrence restrictions must hold: ev-

ery variable of kind S occurs at most twice in Γ; every variable

of kind E or D occurs at most once in Γ. A matcher σ of P is a

substitution such that for any ground substitution ρ together with

a ground renaming τ with Dom(ρ) = MVF (P) such that τ ◦ ρ sat-

isfies ∇, and τ (ρ (σ (s))),τ (ρ (t)) fulfill the LVC for all s ⊴ t ∈ Γ,
we have τ (ρ (σ (s))) ∼let τ (ρ (t)) for all s ⊴ t ∈ Γ, and there exists

a ground substitution ρ0 with Dom(ρ0) = MVI (ρ (σ (∆))) such that

τ (ρ0 (ρ (σ (∆)))) is satisfied.

The letrec matching problem (with LRSX-expressions, only) and
corresponding matchers for LRSX-expressions are defined analo-

gously but all expressions are LRSX-expressions, and no ground

renaming τ is involved. The additional substitution ρ0 in the defi-

nition of a matcher is used for the case that rewrite rules ℓ →∆ r
introduce meta-variables, i.e. if there are meta-variables which oc-

cur in r but not in ℓ. Then the existence of ρ0 ensures that always
a ground instance can be constructed. An example of a rewrite

rule which introduces meta-variables is the rule (abs) which shares

the arguments of a function symbol application: (f s1 . . . sn) →∆

letrecX1.s1; . . . ;Xn .sn in (f (varX1) . . . (varXn)) where ∆ con-

tains NCCs that ensure that X1, . . . ,Xn are fresh w.r.t. s1, . . . , sn .
In [26] a sound and complete matching algorithm for the letrec

matching problem (with LRSX-expressions, only) is given. This al-
gorithm takes a letrec matching problem as input and computes

a constructed solution Sol and in a final step it checks whether

the given constraints in ∇3 imply the required constraints in ∆3.

Except for this final step, the algorithm can be reused to solve the

letrec matching problem for LRSXα-expressions and computing

matchers as follows: Let (Γ,∆,∇) be a letrec matching problem

with α-renamed expressions. Transform the LRSXα-expressions on
right-hand sides of Γ and in ∇ into LRSX-expressions by replacing

all occurrences ξ ·U , ξ ′ ·U with ξ ≈ ξ ′ by a single fresh fixed meta-

variableU ′ (of the same kind as U) and by replacing η·x , η′·x with

η ≈ η′ by a fresh variable x ′. Now apply the matching algorithm

for LRSX of [26] until a solution (SolF ,∆F ,∇F) is produced. Then
construct (SolO ,∆O ,∇O) by replacingU ′ by ξ ·U and x ′ by η·x in

(SolF ,∆F ,∇F). Now the following check whether ∆O implies ∇O
is performed. If it succeeds, then SolO is delivered as a matcher.

Definition 5.2. Let ∆ = (∆1,∆2,∆3) and ∇ = (∇1,∇2,∇3) be
constraint tuples over LRSXα such thatMVI (∇) = ∅ andMVF (∆) ⊆
MVF (∇). Then ∆ implies ∇ if D ∈ ∆1 =⇒ D ∈ ∇1, E ∈ ∆2 =⇒

E ∈ ∇2, and for all (ξ ·u, ξ ′·v) ∈ split
NCC
(∆3) one of the following

cases applies:

(1) ξ ·u = ⟨⟩ · x and ξ ′·v = ⟨⟩ · y where x , y.
(2) (ξ ·u, ξ ′·v) ∈ split

NCC
(∇3).

Varsym (η·x) =

{
{COD(αx,i)} if η = (αx,i ∪ rc) : η

′

{x } ∪ SVsym (η), otherwise
Varsym (ξ ·U) = {VAR(U)} ∪ SVsym (ξ)

CVsym (ξ ·x) =

{
{COD(αx,i)} if ξ = (αx,i ∪ rc) : η
{x } ∪ SVsym (η)

CVsym (η·U) =

{
SVsym (η), if η = (αU ,i ∪ rc) : η

′

{VAR(U)} ∪ SVsym (η) otherwise

SVsym (⟨rc1, . . . ,rcn⟩) =
⋃
i SVsym (rci)

SVsym ({arc1, . . . ,arcn }) =
⋃
i SVsym (arci)

SVsym (αU ,i) = {COD(αU ,i)}
SVsym (LV (αU ,i)) = {COD(αU ,i)}
SVsym (CV (αU ,i)) = {COD(αU ,i)}

The relation ▷◁ is the symmetric closure of the axioms:

x ▷◁ y if x , y x ▷◁ COD(αU ,i) VAR(U) ▷◁ COD(αU ′,i)
COD(αU ,i) ▷◁ COD(αU ′,i′) ifU , U

′
or i , i ′.

Figure 9: The functions Varsym and CVsym and the relation ▷◁

(3) u = v and (u = D or u = E with E < ∆2).

(4) u , v and (u ∈ {S,D,E,X } or v ∈ {D,E,X }).
(5) ξ ′ = ⟨⟩ and v = E or v = D and (v,v) ∈ split

NCC
(∇3).

(6) ξ = ⟨⟩, ξ ′ = ⟨⟩, and (u,v) is of the form (X , y), (x,Y), (X ,Y),
(x,D), (X ,D), (x,E), (X ,E) where in all cases the member-

ship (v,u) ∈ split
NCC
(∇3) holds.

(7) v1 ▷◁ v2 for all (v1,v2) ∈ (Varsym (ξ ·u)×CVsym (ξ ′·v)), where
Varsym (ξ ·u) computes symbolic variables that represent the

set of free and bound variables that may occur in concretiza-

tions of ξ ·u and CVsym (η·v) computes symbolic variables

which may capture variables in the concretizations of ξ ′·v
and the relation v1 ▷◁ v2 symbolically checks whether the

sets of variables represented by v1 and v2 are disjoint (see
Fig. 9).

Lemma 5.3. Assume that ∆ implies ∇. Let ρ be a ground sub-
stitution for MVF (∇) and τ be a ground renaming for ρ, such that
τ ◦ ρ satisfies ∇. Then there exists a ground substitution ρ0 with
Dom(ρ0) = MVI (ρ (∆)) such that τ (ρ0 (ρ (∆))) is satisfied.

Soundness of the matching algorithm for LRSX [26] implies:

Theorem 5.4. The matching algorithm for LRSXα is sound.

Example 5.5. As an example for rewriting of LRSXα-expression,
which also illustrates the necessity of simplification, consider the

transformation (ucp) which inlines a binding that is used only once.

The transformation can be expressed as the meta letrec rewrite rule

letrec X .S in var X →∅,∅, (S,λX .[·]) S where the NCC (S, λX .[·])

Alpha-Renaming of Higher-Order Meta-Expressions PPDP’17, October 9–11, 2017, Namur, Belgium

ensures that X does not occur in S . For the constrained expression

(letrec Y .S0 in var Y , (∅, ∅, (S0, λY .[·]))), α-renaming results in

(letrec αY ,1·Y .⟨αS0,1,αY ,1⟩·S0 in var αY ,1·Y , (∅, ∅, (S0, λY .[·]))).
Matching the left hand side of the transformation (ucp) against

this constrained LRSXα-expression fails, since for the substitution

σ = {X 7→ αY ,1·Y , S 7→ ⟨αS0,1,αY ,1⟩·S0} the validity of the NCC

σ (S, λX .[·]) = (⟨αS0,1,αY ,1⟩·S0, λαY ,1·Y .[·]) cannot be inferred. If
simplification is applied before the matching, then simplification of

(letrec αY ,1·Y .⟨αS0,1,αY ,1⟩·S0 in var αY ,1·Y , (∅, ∅, (S0, λY .[·])))
leads to (letrec αY ,1·Y .αS0,1·S0 in var αY ,1·Y , (∅, ∅, (S0, λY .[·])))
and matching the left hand side of (ucp) against it delivers the

matcher σ = {X 7→ αY ,1·Y , S 7→ αS0,1·S0} where validity of the

NCC σ (S, λX .[·]) = (αS0,1·S0, λαY ,1·Y .[·]) can be inferred since

split
NCC
({(αS0,1·S0, λαY ,1·Y .[·])}) = {(αS0,1·S0,αY ,1·Y)} as well as

since VAR(S0) ▷◁ COD(αY ,1) and COD(αS0,1) ▷◁ COD(αY ,1).

5.2 Refreshing α-Renamings
Matching can be applied to rewrite constrained LRSXα-expressions.
If the constrained expression stems from symbolically α-renaming

an LRSX-expression, then by Proposition 3.8 it concretizations fulfill

the DVC. However, after applying such a rewrite step, the con-

cretizations may no longer fulfill the DVC. For instance, consider a

meta letrec rewrite rule that copies a subexpression:

letrec X .S in C[var X]→∆ letrec X .S in C[S].

Applying the rule to letrec αX ,1·X .αS0,1·S0 in var αX ,1·X results

in letrec αX ,1·X .αS0,1·S0 in αS0,1·S0. The same α-renaming αS0,1
is used for both occurrences of S0 which violates the DVC for in-

stances of the expression. An approach to deal with this problem

could be to generalize the symbolic α-renamings to again symboli-

cally α-rename the expressions. However, this approach seems to

be not easily tractable (for instance, this one needs to introduce re-

naming components of the form αξ ·S,i representing an α-renaming

of already α-renamed expressions). We choose a simpler approach.

It uses the existing α-renamings and refreshes them:

Definition 5.6 (Refreshing Alpha-Renamings). A renumbering of
a symbolic α-renaming modifies αU ,i components by replacing

αU ,i (or αx,i resp.) with αU , j (αx, j ,resp.) where j is a fresh number.

For a constrained LRSXα-expression (s,∆), refresh(s,∆) renumbers

all occurrences of αU ,i and replaces CV (αU ,i) with CV (αU , j) and
LV (αU ,i) with LV (αU , j) respecting the scopes. For bound variables
⟨⟩·x or meta-variables ⟨⟩·U it introduces a fresh α-renaming αx,i or
αU ,i and adds it to the meta-variable and sifts the corresponding

renaming downwards, analogous to AR and sift shown in Fig. 5.

Proposition 5.7. Let (s,∆) be a constrained LRSXα-expression
and (s ′,∆) = refresh(s,∆). Then for each t ∈ γ (s,∆) there exists
t′ ∈ γ (s ′,∆) with t ∼α t′ and for each t′ ∈ γ (s ′,∆) there exists
t ∈ γ (s,∆) with t ∼α t′.

Proof. Replacing αU ,i - and αx,i -renamings by fresh copies im-

plies that the corresponding ground α-renamings use new sets of

variables in their co-domain, which is due to the consistent replace-

ment, also consistent for the concretizations. □

5.3 Checking α-Equivalence
We finally provide a test for checking extended α-equivalence.

Definition 5.8. Let s and s ′ be LRSXα-expressions. The extended
α-equivalence check for s and s ′ first guesses an order of the en-

vironment variables and bindings in all letrec-environments in s
and s ′ and then recursively works along the structure of s and s ′ in
parallel and tries to renumber all symbolic α-renamings such that

• for each binder αx,i ·x in s at position p and αx ′,i′ ·x
′
in s ′

at position p, replace αx,i by αx,k in s and replace αx ′,i′

by αx ′,k in s ′, where k is a fresh number. Perform these

replacements for all occurrences of αx,i and αx ′,i′ , resp. in
the scope of the binder at position p.
• for each occurrence of αU ,i : η·U in s at position p and

αU ,i′ : η
′·U at position p in s ′, replace αU ,i by αU ,k in s

and αU ,i′ by αU ,k ′ in s ′. Perform the replacements for all

occurrences of αU ,i in s and αU ,i′ in s ′.

If the structures of s and s ′ are different or if position p in s ′ does
not exist or is not of the demanded form, then fail. Otherwise, let the

modified expressions be s0 and s
′
0
. Replace αx,k by the substitution

{x 7→ yk } (where yk is fresh) and replace αX ,k by the substitution

{X 7→ Yk } where Yk is a fresh meta-variable. Let s1 and s
′
1
be the

resulting expressions. Check whether s1 and s
′
1
are equivalent w.r.t.

∼let . If this check succeeds, then deliver success else fail.

Given two constrained LRSXα-expressions (s,∆) and (s ′,∆′), the
extended α-equivalence check is valid, if ∆ implies ∆′ as well as ∆′

implies ∆ using the implication check from Definition 5.2, where all

meta-variables are treated as fixed meta-variables, and the extended

α-equivalence check for s and s ′ is valid.

Proposition 5.9. Let s and s ′ be LRSXα-expressions and let ρ be
a ground substitution for ϵ (s) and ϵ (s ′) and τ be a ground renaming
for ρ. Then the extended α-equivalence τ (ρ (s)) ∼α τ (ρ (s ′)) holds.

Proof. Let s0, s
′
0
, s1, s

′
1
be the modified expressions of the α-

equivalence check. First observe that with the extension ρ0 of ρ
such that ρ0 (Yk) = τ (ρ (αX ,k ·Xk)) and ρ0 (U) = ρ (U) for all meta-

variables which are not replaced by the modification from s0 to

s1 and s ′
0
to s ′

1
, we have τ (ρ (s0)) ∼α τ (ρ0 (s1)) and τ (ρ (s ′

0
)) ∼α

τ (ρ0 (s
′
1
)). We have τ (ρ (s0)) ∼α τ (ρ (s)) and τ (ρ (s ′

0
)) ∼α τ (ρ (s ′)),

since only the co-domains of α-renamings are modified. Since s1
and s ′

1
are equivalent w.r.t. ∼let , this also holds for τ (ρ0 (s1)) and

τ (ρ0 (s
′
1
)) and thus we have τ (ρ (s)) ∼α τ (ρ (s ′)). □

Soundness of the implication check and the previous proposition

imply correctness of the extended α-equivalence check:

Theorem 5.10. Assume that the constrained LRSXα-expression
(s,∆) and (s ′,∆′) pass the extended α-equivalence check. Let ρ be
a ground substitution with Dom(ρ) = MV (s) ∪MV (s ′) ∪MV (∆) ∪
MV (∆′) and let τ be a ground renaming for ρ such that τ ◦ ρ satisfies
∆1,∆2,∆

′
1
,∆′

2
. Then i) τ ◦ ρ satisfies ∆ iff τ ◦ ρ satisfies ∆′ and ii)

τ (ρ (s)) ∼α τ (ρ (s ′)).

6 EXPERIMENTS
The LRSX Tool (available from http://goethe.link/LRSXTOOL)
tries to automatically prove correctness of transformations by the

diagram method. After computing the overlaps, it tries to join them

by applying letrec rewrite steps and symbolic α-renaming.

We tested the LRSX Tool with the calculus Lneed [31], and the

calculus LR [32] (which extends Lneed by data constructors for lists,

PPDP’17, October 9–11, 2017, Namur, Belgium David Sabel

Table 1: Statistics of executing the LRSX Tool

overlaps # meta joins

meta joins

with α-renaming

Calculus Lneed
→ 2242 5425 93

← 3001 7273 1402

Calculus LR

→ 87041 391264 73601

← 107333 429104 93230

booleans and pairs together with corresponding case-expressions,

and seq-expressions and thus represents an untyped core language

of Haskell). Table 1 shows the numbers of computed overlaps, cor-

responding joins, and the number of those joins which use the

alpha-renaming procedure. The row marked with→ represent the

overlaps between left hand sides of transformations and standard

reductions, while ← represent the overlaps between right hand

sides of transformations and standard reductions. Due to branching

in unjoinable cases, the number of joins is higher than the number

of overlaps. Note that the strategy of the LRSX Tool is to avoid

α-renamings, and thus α-renaming is applied only, if no join was

found before without performing renaming. The results show that

α-renaming is necessary in about 20 percent of the cases (except

for overlaps of left hand sides in the calculus Lneed). With the help

of α-renaming all computed overlaps could be closed and the cor-

rectness of program transformations (16 transformations for Lneed
and 43 transformation for LR) could be shown automatically.

7 CONCLUSION
We presented an extension of the meta-language LRSX by symbolic

α-renamings. We introduced algorithms for simplification of re-

namings, matching and rewriting of LRSXα-expressions, refreshing
of symbolic α-renamings and checking extended α-equivalence of
LRSXα-expressions. While we have shown soundness of the algo-

rithms, we did not consider completeness which is left for further

work. The algorithms are used in the LRSX Tool, and our exper-

iments show that the approach for α-renaming is successful in

automatically proving correctness of program transformations. Fur-

ther work is to use the approach in other inference procedures and

to investigate whether it can be adapted for nominal techniques.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of PPDP 2017 for their very

valuable comments and suggestions to improve the paper.

REFERENCES
[1] Zena M. Ariola and Matthias Felleisen. 1997. The Call-By-Need lambda Calculus.

J. Funct. Program. 7, 3 (1997), 265–301.
[2] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip

Wadler. 1995. A call-by-need lambda calculus. In POPL 1995. ACM, 233–246.

[3] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and

Stephanie Weirich. 2008. Engineering Formal Metatheory. In POPL 2008. ACM,

3–15.

[4] Christophe Calvès and Maribel Fernández. 2008. Nominal Matching and Alpha-

Equivalence. In WoLLIC 2008 (LNCS), Vol. 5110. Springer, 111–122.
[5] Christophe Calvès and Maribel Fernández. 2008. A polynomial nominal unifica-

tion algorithm. Theor. Comput. Sci. 403, 2-3 (2008), 285–306.

[6] Arthur Charguéraud. 2012. The Locally Nameless Representation. J. Autom.
Reasoning 49, 3 (2012), 363–408.

[7] Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless

dummies, a tool for automatic formula manipulation, with application to the

Church-Rosser theorem. In Indagationes Mathematicae (Proceedings), Vol. 75.
Elsevier, 381–392.

[8] Maribel Fernández and Murdoch Gabbay. 2007. Nominal rewriting. Inf. Comput.
205, 6 (2007), 917–965.

[9] Robert Harper, Furio Honsell, and Gordon D. Plotkin. 1993. A Framework for

Defining Logics. J. ACM 40, 1 (1993), 143–184.

[10] Jordi Levy and Mateu Villaret. 2008. Nominal Unification from a Higher-Order

Perspective. In RTA 2008 (LNCS), Vol. 5117. Springer, 246–260.
[11] Elena Machkasova. 2007. Computational Soundness of a Call by Name Calculus

of Recursively-scoped Records. In WRS 2007 (ENTCS).
[12] Elena Machkasova and Franklyn A. Turbak. 2000. A Calculus for Link-Time

Compilation. In ESOP 2000 (LNCS), Vol. 1782. Springer, 260–274.
[13] Conor McBride and James McKinna. 2004. Functional pearl: i am not a number-i

am a free variable. In Haskell 2004. ACM, 1–9.

[14] James Hiram Morris. 1968. Lambda-Calculus Models of Programming Languages.
Ph.D. Dissertation. MIT.

[15] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual

modal type theory. ACM Trans. Comput. Log. 9, 3 (2008), 23:1–23:49.
[16] Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In PLDI

1988. ACM, 199–208.

[17] Frank Pfenning and Carsten Schürmann. 1999. System Description: Twelf - A

Meta-Logical Framework for Deductive Systems. In CADE 1999 (LNCS), Vol. 1632.
Springer, 202–206.

[18] Brigitte Pientka. 2008. A type-theoretic foundation for programming with higher-

order abstract syntax and first-class substitutions. In POPL 2008. ACM, 371–382.

[19] Brigitte Pientka and Andrew Cave. 2015. Inductive Beluga: Programming Proofs.

In CADE 2015 (LNCS), Vol. 9195. Springer, 272–281.
[20] Brigitte Pientka and Joshua Dunfield. 2008. Programming with proofs and explicit

contexts. In PPDP 2008. ACM, 163–173.

[21] Andrew Pitts. 2016. Nominal Techniques. ACM SIGLOG News 3, 1 (2016), 57–72.
[22] Gordon D. Plotkin. 1975. Call-by-name, call-by-value, and the lambda-calculus.

Theoret. Comput. Sci. 1 (1975), 125–159.
[23] Randy Pollack, Masahiko Sato, and Wilmer Ricciotti. 2012. A Canonical Locally

Named Representation of Binding. J. Autom. Reasoning 49, 2 (2012), 185–207.

[24] Conrad Rau, David Sabel, and Manfred Schmidt-Schauß. 2012. Correctness

of Program Transformations as a Termination Problem. In IJCAR 2012 (LNCS),
Vol. 7364. Springer, 462–476.

[25] David Sabel. 2017. Alpha-Renaming of Higher-Order Meta-Expressions. Frankfurter
Informatik-Berichte 2017-2. Goethe-University Frankfurt amMain. http://goethe.

link/fib-2017-2

[26] David Sabel. 2017. Rewriting of Higher-Order Meta-Expressions with Recursive
Bindings. Frankfurter Informatik-Berichte 2017-1. Goethe-University Frankfurt

am Main. http://goethe.link/fib-2017-1

[27] David Sabel and Manfred Schmidt-Schauß. 2008. A Call-by-Need Lambda-

Calculus with Locally Bottom-Avoiding Choice: Context Lemma and Correctness

of Transformations. Math. Structures Comput. Sci. 18, 03 (2008), 501–553.
[28] Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, and Mateu Villaret. 2017.

Nominal Unification of Higher Order Expressions with Recursive Let. In LOPSTR
2016, Revised Selected Papers (LNCS), Vol. 10184. Springer, 328–344.

[29] Manfred Schmidt-Schauß, Conrad Rau, and David Sabel. 2013. Algorithms for Ex-

tended Alpha-Equivalence and Complexity. In RTA 2013 (LIPIcs), Vol. 21. Schloss
Dagstuhl, 255–270.

[30] Manfred Schmidt-Schauß and David Sabel. 2016. Unification of Program Expres-

sions with Recursive Bindings. In PPDP 2016. ACM, 160–173.

[31] Manfred Schmidt-Schauß, David Sabel, and Elena Machkasova. 2010. Simulation

in the Call-by-Need Lambda-Calculus with letrec. In RTA 2010 (LIPIcs), Vol. 6.
Schloss Dagstuhl, 295–310.

[32] Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. 2008. Safety of

Nöcker’s Strictness Analysis. J. Funct. Programming 18, 04 (2008), 503–551.

[33] Christian Urban, Andrew M. Pitts, and Murdoch Gabbay. 2003. Nominal Unifica-

tion. In CSL 2003 (LNCS), Vol. 2803. Springer, 513–527.
[34] Joe B.Wells, Detlef Plump, and Fairouz Kamareddine. 2003. Diagrams forMeaning

Preservation. In RTA 2003 (LNCS), Vol. 2706. Springer, 88 –106.

http://goethe.link/fib-2017-2
http://goethe.link/fib-2017-2
http://goethe.link/fib-2017-1

	Abstract
	1 Introduction
	2 Languages LRS and LRSX
	2.1 The Language LRS
	2.2 The Meta-Language LRSX

	3 Alpha-Renaming of Meta-Expressions
	3.1 The Language LRSXALPHA
	3.2 Performing Symbolic Alpha-Renaming

	4 Simplification of Alpha-Renamings
	5 Algorithms for LRSXALPHA-Expressions
	5.1 Rewriting Meta-Expressions
	5.2 Refreshing Alpha-Renamings
	5.3 Checking Alpha-Equivalence

	6 Experiments
	7 Conclusion
	Acknowledgments
	References

