
Nominal Unification with Atom-Variables

Manfred Schmidt-Schauß

Goethe-University Frankfurt am Main, Germany

David Sabel

Goethe-University Frankfurt am Main, Germany

Yunus D. K. Kutz

Goethe-University Frankfurt am Main, Germany

Abstract

The problem of nominal unification where variables are allowed for atoms, and computing a com-
plete set of unifiers is considered. The complexity is shown to be NP-complete, while for special
cases there are polynomial time algorithms. The main result is a novel algorithm to compute a
complete set of unifiers which performs lazy guessing of equality or disequality of atom-variables,
runs in NP time, and the collecting variant has more chances to keep the complete set of unifiers
small. Applications of this algorithm are in reasoning about program transformations in higher
order functional languages. We also present a variant of the unification algorithm that delays
guessing and checking solvability, and produces a single most general unifier.

Key words: program transformations, nominal unification, functional languages,
atom-variables, correctness

1. Introduction

Motivation, Applications and Goals. The initial motivation to introduce and investigate
nominal reasoning and unification was the observation that formalizations of proofs in

? The first author is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant under grant

SCHM 986/11-1. The second author is supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant SA 2908/3-1.

Email addresses: schauss@ki.informatik.uni-frankfurt.de (Manfred Schmidt-Schauß),
sabel@ki.informatik.uni-frankfurt.de (David Sabel), kutz@ki.informatik.uni-frankfurt.de

(Yunus D. K. Kutz).

c© 2018. This manuscript version is made available under the

CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

higher-order deduction systems like Isabelle (Nipkow et al., 2002; Urban and Kaliszyk,
2012) would profit from a more machine-oriented formalization of reasoning about α-
equivalence and for arguments in automated proofs that employ renaming of bound
variables by fresh names. This leads to the development and application of nominal
theories and techniques (a recent tutorial is (Pitts, 2016), a broad overview is (Pitts,
2013)) and also of nominal unification (Urban et al., 2003; Calvès and Fernández, 2008;
Levy and Villaret, 2010).

An often used assumption in the technique of nominal reasoning is that variable names
(called atoms) in higher-order binders are concrete, and not abstract, and that modifying
the terms is done by applying atom permutations to terms and replace atoms, irrespective
of their binding status (see (Urban et al., 2003)).

In the application field of verifying program transformations in higher order languages
using syntactical reasoning and the operational semantics (for instance, defined by a small
step reduction relation), a foundational reasoning task is to compute overlaps between left
hand sides of small-step-reduction rules and transformation rules employing a unification
algorithm. This task is similar to the computation of critical pairs in term rewrite systems
(variants for nominal syntax were recently investigated by Ayala-Rincón et al. (2016)). A
difference is that instead of all overlaps only those overlaps have to be taken into account
which match the reduction strategy given by the operational semantics.

An algorithm for computing overlaps for a class of higher-order program calculi is
described in (Schmidt-Schauß and Sabel, 2016): It is an algorithm for unification of
higher-order expressions with meta-variables, where (among others) expression-variables
and variable-variables are used. As a consequence, in that approach, there are no con-
crete atoms, but “abstract” atoms. For this application it is indispensable to compute
complete sets of unifiers. As correctness criterion, syntactical equality is used instead of
alpha-equivalence. The treatment of alpha-equivalence and binding constraints uses so-
called non-capture constraints. Further reasoning on correctness and executing reductions
and/or transformations requires to also use and reason about alpha-renamings, which is,
however, not supported by the unification method in (Schmidt-Schauß and Sabel, 2016).

In this paper we focus on a combination of the approaches and investigate nominal
unification with the feature of abstract atoms (called atom-variables).

We focus on unification of nominal terms with atom-variables, since it is a basic
reasoning task required by several reasoning algorithms. Hence, the goal of the paper is
to construct a unification algorithm for higher-order meta-expressions which comprise
atom-variables. In contrast to (Schmidt-Schauß and Sabel, 2016), we leave the task of
combining the methods also with extra constructs like context variables, letrec-constructs
and binding chains (which is required for sophisticated reasoning in call-by-need lambda
calculi) for further research.

We illustrate the differences between nominal unification with concrete atoms and
on the other hand with atom-variables. As a quite small example consider the equation
λx.λy.x

.
= λx.λy.y. If x, y are atoms, then the equation is ground on both sides (there

are no unification variables) and there is no solution: nominal unification only checks
alpha-equivalence which results in the unsolvable equation x

.
= y. But, if x, y repre-

sent unification variables which can be instantiated by atoms, then there exists a solu-
tion which instantiates x, y by the same atom a. Furthermore, nominal unification with
atom-variables generalizes usual nominal unification, if so called freshness constraints are
allowed in the input, since they can enforce disequality of instantiations of atom-variables.

2

For instance, the freshness constraint x#y ensures that atom-variables x and y must not

be instantiated by the same atom. Thus, the equation λx.λy.x
.
= λx.λy.y together with

freshness constraint x#y represents usual nominal unification and thus has no solution.

As a motivating example for the usefulness of atom-variables in applications, we con-

sider the following instance of a call-by-value beta reduction rule with 3-ary lambda

expressions where the arguments are variables, which may be enforced by the syntax. As

a small-step reduction rule one would usually write

(λ(x1, x2, x3).e) (y1, y2, y3)→ e[y1/x1, y2/x2, y3/x3]

where y1, y2, y3 are variables and implicitly the binders x1, x2, x3 are meant to be dif-

ferent. To (syntactically) reason on such a rule, it has to be represented by using meta-

syntax. However, with usual nominal syntax (with atoms but without atom-variables),

it is insufficient to represent the rule as

(λ(a1, a2, a3).S) (b1, b2, b3)→ S[b1/a1, b2/a2, b3/a3],

where S is an expression-variable and ai, bi are atoms (and [·/·, ·/·, ·/·] is a 6-ary function

symbol), since the semantics of nominal syntax enforces a1, a2, a3, b1, b2, b3 to be pairwise

different atoms, however, the variables y1, y2, y3 in the above description of the rule can

also be equal. Thus, to represent the rule with nominal syntax, one has to add 4 more

rules which cover the cases that two or three of the variables y1, y2, y3 are equal:

(λ(a1, a2, a3).S) (b1, b1, b2)→ S[b1/a1, b1/a2, b2/a3]

(λ(a1, a2, a3).S) (b1, b2, b1)→ S[b1/a1, b2/a2, b1/a3]

(λ(a1, a2, a3).S) (b2, b1, b1)→ S[b2/a1, b1/a2, b1/a3]

(λ(a1, a2, a3).S) (b1, b1, b1)→ S[b1/a1, b1/a2, b1/a3]

However, using nominal syntax with atom-variables the rule can be represented by one

rule

(λ(A1, A2, A3).S) (B1, B2, B3)→ S[B1/A1, B2/A2, B3/A3]

where Ai, Bi are atom-variables and S is an expression-variable. Without further con-

straints, the rule allows A1, A2, A3 being instantiated with equal atoms, but disequality of

A1, A2, A3 can be ensured by adding freshness constraints A1#A2, A2#A3, and A1#A3.

As a third example, consider the following transformation rule from a call-by-need

lambda calculus with sharing (for instance, in (Schmidt-Schauß et al., 2008) such a

transformation rule appears, called (cpcxnoa)) which allows to copy so-called constructor

applications (c x1 . . . xn) provided the arguments are variables (since otherwise copying

arbitrary expressions would contradict the sharing philosophy):

let y = (c x1 . . . xn), z = C[y] in e→ let y = (c x1 . . . xn), z = C[(c x1 . . . xn)] in e

Again, in this rule the variables x1, . . . , xn may be different or equal, and thus in meta-

notation they can easily be represented by atom-variables, while using atoms requires to

split the rule into several cases.

3

Peculiarities and Results. Adding atom-variables to the nominal syntax and reasoning al-
gorithms is not straightforward, since nominal unification explicitly deals with renamings
by using explicit permutations on atoms. Replacing atoms by atom-variables complicates
this approach, since several nice properties, for instance, having compact representations
of permutations and also several simplification rules on permutations, no longer apply
to permutations with atom-variables. Hence, our algorithm for nominal unification with
atom-variables requires – compared with nominal unification with atoms – specific pre-
cautions on the treatment of permutations (see Examples 4.1 and 4.2 below and Remark
3.10 in (Urban et al., 2003), discussed in Example 2.12). Thus, we will substantially
extend the machinery from nominal unification (Urban et al., 2003), who assume that
atoms are distinct.

Throughout the paper, we will work with different languages for expressions which all
are built from function symbols and lambda-binders. The following table summarizes the
used languages, which we call NLa,NLaS and NLAS

1 :

NLa ground nominal expressions (with ground atoms in binders),
and no permutations.

NLaS nominal expressions with expression-variables, ground atoms
in binders, and ground atom permutations

NLAS nominal expressions with expression-variables, atom-variables
in binders, and atom-variable permutations

It will not be necessary to treat a language which contains both, atoms and atom-
variables, since disequality of atom-variables can be expressed by freshness constraints
(similar as in (Lakin, 2011)).

The following main results are obtained in this paper: A sound and complete algorithm
AVNomUnify for nominal unification with atom-variables and freshness constraints is
constructed, together with some subalgorithms. As a decision algorithm it runs in NP
time, and as a collecting algorithm, it outputs an at most exponential number of unifiers
where every unifier is represented in polynomial space (see Theorem 5.6). The algorithm
is designed such that it has a good chance to compute a small, complete set of uni-
fiers. Polynomiality of our algorithm is achieved by using the Martelli-Montanari-style
(Martelli and Montanari, 1982) of unification algorithms. Proposition 6.1 shows that a
variant of our unification algorithm produces a single most general unifier provided the
input is solvable, however, it delays deciding the satisfiability to solving the freshness con-
straints. As a novel observation, we show that nominal unification with atom-variables,
but without any freshness constraint in the input, can be decided in polynomial time
(see Theorem 3.6).

Related Approaches There are extensions and restrictions of nominal unification. A quite
general nominal constraint solving is considered in (Cheney, 2004b) where besides atom-
variables (as in our setting) also permutation variables are permitted in the problems.
However, there is no complete and in-NP algorithm for computing unifiers. Also the
overall goal in (Cheney, 2004b) is to solve a different variant of nominal unification –

1 Our (generic) naming of languages is different from the one in the literature.

4

called equivariant unification (Cheney, 2004a, 2010)), which requires that the instanti-

ated equations of a nominal unification problem still hold under application of atom

permutations.

A further related approach are nominal constraints of non-permutative nominal ab-

stract syntax (NPNAS) analyzed by Lakin (2011). Those constraints are nominal con-

straints in a language with atom-variables, but without permutations, and thus the used

syntax is more restricted than ours. Lakin (2011) shows that the expressivity is the same

as Cheney’s name-name equivariant unification (Cheney, 2004a, 2010)) (where unifica-

tion equations equate name terms instead of full terms). He also constructs an algorithm

that proceeds by exploiting the deeper structure of nominal expressions using so-called

narrowing (a form of lazy instantiation), and shows that it is a decision algorithm. How-

ever, there is no proof of an upper bound on the used space or the running time, and it

does not compute a complete set of unifiers or solutions. Since our syntax can represent

NPNAS-constraints, our algorithms are directly applicable to solve NPNAS-constraints

(without types). For the other direction – i.e. solving nominal unification problems with

atom-variables using NPNAS-constraints there is no obvious polynomial time encoding,

while the first phase algorithm of Cheney (2004a, 2010) provides an exponential time

encoding: non-deterministic guessing of equalities/disequalities of atom-variables with

subsequent removal of permutations leads to a non-deterministic polynomial time encod-

ing.

Structure of the paper. Section 2 contains the preliminary definitions and notations, and

the definitions of nominal syntax. After briefly recalling the problem and the result for

usual nominal unification, the nominal unification problem with atom-variables is in-

troduced. In Section 3 simple but rather inefficient algorithms for the general case of

variable atom nominal unification are described and several complexity bounds also for

special cases. The second part starts with Section 4 that describes the improved algo-

rithm AVNomUnify, which performs non-deterministic (dis-)equality choices as lazy as

possible accompanied by an extended set of unification rules. Section 5 contains proofs of

soundness and completeness and complexity of the algorithm AVNomUnify. In Section

6 we sketch an algorithm that produces a single most general unifier. We conclude in

Section 7.

2. An Algorithm for Nominal Unification with Variables

In this section we recall usual nominal unification with atoms and its results, introduce

the generalized languages with atom-variables, introduce the required notation and define

the variable-atom nominal unification problem.

2.1. Nominal Terms

In this section we briefly recall nominal expressions (sometimes also called nominal

terms). Let F be a set of function symbols f ∈ F , s.t. each f has a fixed arity ar(f) ≥ 0.

Let At be the set of atoms ranged over by a, b. The ground language NLa consists of

atoms, lambda-expressions which bind atoms, and function symbols.

5

Definition 2.1 (The nominal language NLa). The syntax of the language NLa is defined
by the following grammar:

e ∈ NLa ::= a | (f e1 . . . ear(f)) | λa.e

With At(e) we denote the set of atoms contained in e.

As a convention, we assume throughout this paper, that differently named atoms
are different. For convenience, we also use tuples in the language and view them as
applications (f e1 . . . ear(f)) not naming the function symbol.

For atoms a, b, a swapping (a b) represents the function {a 7→ b, b 7→ a} ∪ {c 7→ c |
c 6∈ {a, b}}. In particular, (a b) is identical to (b a). A list of swappings π is called a
permutation, i.e. a bijective mapping that maps atoms to atoms. We write ∅ for the
empty permutation (containing no swappings), and we write π1 · π2 for concatenation
(composition, resp.) of permutations π1 and π2. In abuse of notation we also write (a b)·π
or π · (a b) to prepend or append a swapping (a b) to a permutation. Additionally, we
write π·e (and (a b)·e, resp.) for the application of a permutation (a swapping, resp.) to
a term e. Similarly, we apply the permutations and swappings to atoms. The domain of
permutations is defined as dom(π) = {a ∈ At | π(a) 6= a}.

For ground expressions an application π·a can be evaluated by the following rules:

∅ · a := a

π · (a b)·a := π·b

π · (a b)·b := π·a

π · (a b)·c := π·c,

π·λa.e := λπ·a.π·e

π·(f e1 . . . ear(f)) := (f π·e1 . . . π·ear(f))

Compositions π1 ◦π2 and inverses π−1 can be immediately computed as follows: com-
positions are the concatenation of the two lists of swappings, and an inverse is a reverse
of the list.

For an atom a and a term e the construct a#e is called a freshness constraint. A
freshness constraint holds iff atom a does not occur free in e. For ground expressions the
following rules decide whether a freshness constraint holds:

a#b a#λa.e

a#e

a#λb.e

∀i : a#ei

a#(f e1 . . . ear(f))

Thus, in NLa, all expressions π·e can be transformed into expressions without any
permutations. In NLa, also all freshness constraints can immediately be evaluated.

Definition 2.2 (Syntactic α-equivalence ∼ in NLa). The equivalence ∼ on expressions
e ∈ NLa is inductively defined by the following rules:

a ∼ a
∀i : ei ∼ e′i

(f e1 . . . ear(f)) ∼ (f e′1 . . . e
′
ar(f))

e ∼ e′

λa.e ∼ λa.e′
a#e′ ∧ e ∼ (a b)·e′

λa.e ∼ λb.e′

Note that the relation ∼ is identical to the equivalence relation generated by α-
equivalence by renaming binders, which can be proved in a simple way by arguing on
the (binding-)structure of expressions (using de Bruijn-indices), and hence ∼ is an equiv-
alence relation on NLa. It is also a congruence on NLa, i.e., for a context C, we have
e1 ∼ e2 implies C[e1] ∼ C[e2].

6

Remark 2.3. A permutation π represented as a list of swappings in NLa can be
represented using at most |At(π)| − 1 swappings, where At(π) is the set of ground
atoms occurring in π. Hence the number of swappings in a permutation in NLa can
be bounded linearly in the number of atoms. This can be seen as follows: The behavior
of a permutation as a function can be split into (disjoint) cycles. Consider a single cycle
{a1 7→ a2, a2 7→ a3, . . . , an−1 7→ an, an 7→ a1} of π. This can be encoded by the following
swapping list: (a1 a2)(a2 a3) . . . (an−1 an). The only nontrivial check is the image of an,
which is a1 by sequential application of the swappings. The length of the list is at most
|At(π)| − 1.

We write π ≡ π′, if the permutations π, π′ are identical as functions.

2.2. Nominal Unification

In this section we recall the nominal unification problem and results on solving it. For
unification we extend the syntax of expressions by variables representing expressions. Let
S be the set of variables standing for expressions, expression-variables, for short, where
elements of S are ranged over by S, T . Nominal-unification expressions extend ground
expressions by variables S, T for expressions and by swappings and permutations. In the
syntax below we also overload the symbol · by using it for (syntactic) application of a
permutation (or a swapping, resp.) to an expression-variable.

Definition 2.4 (The nominal language NLaS). The language NLaS is defined by the
following grammar:

e ∈ NLaS ::= a | S | π·S | (f e1 . . . ear(f)) | λa.e

π ::= ∅ | (a a′) · π

The inclusion of syntactic swappings and permutations is necessary, since terms like
π·S cannot be further evaluated. Such terms are called suspensions. It is not necessary
to distinguish between (π1 · π2) ·S and π1 · (π2 ·S), since semantically they represent the
same expressions. Let ExVar(e) be the set of expression-variables contained in e.

A substitution σ is a finite mapping of expression-variables S to expressions e ∈ NLaS .
In the following we write eσ or σ(e) for applying a substitution σ to an expression e. For
substitutions σ1, σ2, we denote with σ1 ◦ σ2 the composition of σ1, σ2, s.t. e(σ1 ◦ σ2) =
σ2(σ1(e)). These notations will also be used for other substitutions in this paper.

We recall the definition of a nominal unification problem and define solutions and
unifiers by using the ground term semantics:

Definition 2.5. A nominal unification problem is a pair (Γ,∇) where Γ is a finite set
of equations e

.
= e′ with e, e′ ∈ NLaS and ∇ is a finite set of freshness constraints a#e

where a is an atom and e ∈ NLaS .
A substitution is ground for (Γ,∇) if it maps all variables S1, . . . , Sn in (Γ,∇) to

expressions e ∈ NLa. A ground substitution σ is a solution of a nominal unification
problem (Γ,∇) iff eσ ∼ e′σ for all (e

.
= e′) ∈ Γ and a#eσ is valid for all (a#e) ∈ ∇.

A nominal unification problem (Γ,∇) is solvable if, and only if there is a solution for
(Γ,∇). A set of freshness constraints ∇ is solvable if, and only if (∅,∇) is solvable.

For a nominal unification problem (Γ,∇), a unifier is a pair (σ,∇′) where σ is a
substitution and ∇′ is a set of freshness constraints, s.t. ∇′ is solvable and for all ground
substitutions γ: (∀a#e ∈ ∇′ : a#eσγ is valid) =⇒ (σ ◦ γ) is a solution for (Γ,∇)

7

For a nominal unification problem (Γ,∇), a set M of unifiers is complete, iff for every
solution ρ of (Γ,∇), there is a unifier (σ,∇′) ∈M such that there is a ground substitution
γ with Sσγ ∼ ρ(S) for all variables S occurring in (Γ,∇). A unifier (σ,∇′) is a most
general unifier of (Γ,∇), if {(σ,∇′)} is a complete set of unifiers for (Γ,∇).

Theorem 2.6 (Urban et al. (2003); Calvès and Fernández (2008); Levy and Villaret
(2008, 2010)). The nominal unification problem in NLaS is solvable in quadratic time.
Moreover, for a solvable nominal unification problem (Γ,∇), there exists a most general
unifier, which can be computed in polynomial time.

2.3. Introducing Atom-Variables

We now introduce the extension of nominal terms and nominal unification by atom-
variables. The idea is to allow variables at the position of atoms which semantically can
be instantiated by atoms. However, it is not necessary to deal with a language that has
both atoms and atom-variables, since it is sufficient to replace atoms by atom-variables
and to add freshness constraints which ensure that two different variables always mean
different atoms. The semantics of these meta-expressions however, are subsets of the set
of all NLa-expressions.

We adapt the previously introduced notions to also cover atom-variables. Thus, let A
be the set of atom-variables ranged over by A,B, and let atom-variable swappings (A B)
be swappings of atom-variables (with the semantics that (A B) represents all swappings
of atoms which can be derived by instantiating the atom-variables A and B by (concrete)
atoms).

We use atom-variable permutations π which are a list of atom-variable swappings. We
also can compute the composition π1 ◦ π2 and inverses π−1 for atom-variable permuta-
tions by list concatenation and list reversal, respectively. The domain of atom-variable
permutations is defined as dom(π) = {A | π(A) 6= A}.

Definition 2.7 (The nominal language NLAS with atom-variables). The grammar of
the language NLAS is

e ::= A | S | π·A | π·S | (f e1 . . . ear(f)) | λπ·A.e

π ::= ∅ | (A A′) · π

With AtVar(e) we denote the set of atom-variables contained in e, and as before
with ExVar(e) we denote the set of expression-variables contained in e. With tops(e)
we denote the top-symbol of expression e, i.e. tops(A) := A, tops(S) := S, tops(π·A) :=
A, tops(π·S) := S, tops(f e1 . . . ear(f)) = f , and tops(λA.e) = λ.

Note that it is not necessary to allow permutations π on every expression, since they
can always be shifted into the expression, using the following operations to shift permu-
tations π into the expressions and derive an NLAS-expression:

π·(f e1 . . . ear(f)) → (f π·e1 . . . π·ear(f)),

π·(λA.e) → λ(π·A).(π·e), and

∅·e → e

8

In NLAS , we call the constructs π·A and π·S suspensions. Note that in general it is not
possible to evaluate the application of an atom-variable swapping to an atom-variable,
for instance (A B)·C, since the result depends on whether A = C and/or B = C. A
thorough treatment will be given in Section 4.

A freshness constraint for the language NLAS is of the form A#e where e is an NLAS-
expression and A is an atom-variable.

In NLAS we have two kinds of substitutions. On the one hand we have substitutions
which map expression-variables to expressions in NLAS and atom-variables to atom-
variables or suspensions of atom-variables. On the other hand we will use substitutions
(called ground substitutions), which are also translations from NLAS into NLa: They
map expression-variables to expressions in NLa and atom-variables to atoms. We will use
both kinds of substitutions where the kind is always clear from the context. Furthermore,
both kinds of substitutions can be extended in a natural way also to expressions, where
variables A are replaced at every position, also at binder position: for example let σ =
{A 7→ B;S 7→ λA′.A′}; then (λA.λA.(A,B, S))σ = (λB.λB.(B,B, λA′.A′)).

Definition 2.8. Let Γ be a set of equations of the form e1
.
= e2 with NLAS-expressions

e1, e2, and let ∇ be a set of freshness constraints over NLAS . Then (Γ,∇) is a variable-
atom nominal unification problem (VANUP).

We define solutions and unifiers for VANUPs w.r.t. the ground term semantics, i.e.
w.r.t. NLa-expressions:

Definition 2.9 (Solution of a VANUP). A ground substitution ρ is a solution of (Γ,∇),
iff for all equations e1

.
= e2 in Γ: e1ρ ∼ e2ρ, and for all freshness constraints A#e ∈ ∇ the

freshness constraint Aρ#eρ is valid. A variable-atom nominal unification problem (Γ,∇)
is solvable if, and only if a solution for (Γ,∇) exists. A set of freshness constraints ∇ is
solvable if, and only if there is a solution for (∅,∇).

Definition 2.10 (Unifier of a VANUP). Let (Γ,∇) be a variable-atom nominal unifica-
tion problem. A pair (σ,∇′) is a unifier of (Γ,∇) iff

∇′ is solvable and for all ground substitutions γ:

(∀A#e ∈ ∇′ : Aσγ#eσγ is valid) =⇒ σ ◦ γ is a solution for (Γ,∇)

For a variable-atom nominal unification problem (Γ,∇), a set M of unifiers is complete,
iff for every solution ρ of (Γ,∇), there is a unifier (σ,∇′) ∈ M , such that there is a
ground substitution γ with σγ(A) = ρ(A) and σγ(S) ∼ ρ(S) for all atom-variables A
and expression-variables S occurring in (Γ,∇).

A unifier (σ,∇′) is a most general unifier of (Γ,∇), if {(σ,∇′)} is a complete set of
unifiers for (Γ,∇).

Note that a VANUP may have more than one unifier.

Example 2.11. The equation λA.A
.
= λB.S has a solution {A 7→ a,B 7→ b, S 7→ b}. It

has a unifier {S 7→ B} with empty set ∇, which is indeed most general.
The equation λA.(A,S)

.
= λB.(A B)·(S,B) has a solution {A 7→ a,B 7→ a, S 7→ a}. A

unifier is: {B 7→ A,S 7→ A} with empty set ∇. Note that there is no nominal unifier of the
problem that corresponds to treating A,B as different atoms: λa.(a, S)

.
= λb.(a b)·(S, b)

is not nominal unifiable, since a#(a b)·(S, b) is not valid.

9

Example 2.12. Consider the example (A B)·C .
= C (see Remark 3.10 in (Urban et al.,

2003)). The set {({A#C,B#C}, Id), (∅, {A 7→ C,B 7→ C})} is complete and contains

two unifiers, which are incomparable. In the literature, this example is used as justifying

the conjecture that sometimes a set of at least two unifiers is necessary for completeness

instead of a (single) most general unifier. However, according to our definitions and since

we allow rather general freshness constraints, the pair ({C#λ(A B)·C.C}, Id) is a most

general unifier. The idea is exploited in Section 6 to argue that a single most general

unifier is sufficient, where, however, the solvability test has to be shifted to the freshness

constraints.

Remark 2.13. Note that a definition of α-equivalence on the language NLAS (or

also on NLAS-expressions without expression-variables) is meaningless, since such a no-

tion is not stable under substitutions: for example λA.λB.(A,B) would be α-equivalent

to λC.λD.(C,D) under an appropriate definition, but with σ = {A 7→ B}, we have

(λA.λB.(A,B))σ = λB.λB.(B,B) which is not α-equivalent to λC.λD.(C,D).

We introduce some notation for freshness constraints:

Definition 2.14. Let ∇ be a set of atom-variable freshness constraints. In the following

we write ∇ ` A 6= B, if A#B ∈ ∇ or B#A ∈ ∇. More general, for two sets M1,M2 of

atom-variables, we write ∇ `M1#M2, if for all pairs A1 ∈M1, A2 ∈M2 : ∇ ` A1 6= A2.

We also write ∇ ` #M , if for all pairs of variables A 6= B in M , we have ∇ ` A 6= B.

3. Complexity of Atom-Variable Nominal Unification

In this section we show that the variable-atom nominal unification problem is NP-

complete, and that it is polynomial in two special cases. The NP-completeness result

follow from the results in Cheney (2004b, 2010), where NP-hardness also follows from

Lakin (2011). However, since our expression syntax (and also several notations) is differ-

ent, and for the sake of completeness, and since the NP-hardness encoding is different,

we include full proofs. We will explain the simple brute-force non-deterministic guess-

ing algorithm, which translates atom-variable nominal unification into usual nominal

unification.

Theorem 3.1. Solvability of atom-variable freshness constraints is NP-hard.

Proof. We show that the Monotone one-in-three-3-SAT-problem (Schaefer, 1978)

is reducible to satisfiability of atom-variable freshness. Let C := {{pi,1, pi,2, pi,3} | i =

1, . . . n} be an instance of the Monotone one-in-three-3-SAT-problem. Here pi,j are

the propositional variables, {pi,1, pi,2, pi,3} are clauses, and the question is whether there

is a valuation ρ that assigns true to exactly one literal in every clause, and false to the

others. This problem is known to be NP-complete.

Let True be an atom-variable, and let Ai,j be atom-variables (perhaps not different).

The following freshness constraints encode that the three variables in single clauses are

interpreted as pairwise different atoms (∇1) and that at least one variable of each clause

10

is equal to the atom-variable True (∇2):

∇1 := {Ai,1#Ai,2, Ai,2#Ai,3, Ai,3#Ai,1 | i = 1, . . . n}

∇2 := {True#λAi,1.λAi,2.λAi,3.True | i = 1, . . . , n}

∇ := ∇1 ∪∇2

Obviously, this is a polynomial encoding. If there is a solution ρ of the freshness con-

straints ∇, then this also solves the Monotone one-in-three-3-SAT-problem by con-

structing the following model M : M(pi,j) = true iff ρ(Ai,j) = ρ(True) and M(pi,j) =

false, otherwise. Furthermore, if C is solvable, then also the constraint ∇ is solvable: For

a model M of C, construct the solution ρ for ∇ with ρ(True) = b, and if M(pi,j) = true

then ρ(Ai,j) = b else ρ(Ai,j) := ai,j , where b, and all ai,j are pairwise different atoms. 2

Theorem 3.2. The variable-atom nominal unification problem, where ∇ consists only

of freshness constraints of the form A#B, is NP-hard.

Proof. We show that the atom-variable freshness constraints (∇1 ∪∇2) in the proof of

Theorem 3.1 are solvable if, and only if the VANUP (Γ,∇1 ∪∇3) is solvable where

Γ := {λTrue.Si
.
= λB.λAi,1.λAi,2.λAi,3.True | i = 1, . . . n}

∇3 := {True#B}

where ∇1,∇2 are defined as in the proof of Theorem 3.1, S1, . . . , Sn are expression-

variables, and B is an atom-variable which is different from True and all Ai,j .

First, let ρ0 be a solution of (∇1 ∪ ∇2). We construct a solution ρ1 of (Γ,∇1 ∪
∇3): ρ1(Ai,j) := ρ0(Ai,j) for all i, j, ρ1(True) := ρ0(True), ρ1(B) := b where b is a

fresh atom that is different from ρ0(True) and all atoms ρ0(Ai,j), and let ρ1(Si) :=

λρ1(Ai,1).λρ1(Ai,2).ρ1(Ai,3).ρ1(True). By applying ρ1 to (Γ,∇1 ∪ ∇3) one can verify

that ρ1 is a solution.

Now let σ0 be a solution of (Γ,∇1 ∪ ∇3): We show that σ0 is a solution of ∇2: Since

σ0 is a solution of Γ, we have σ0(λTrue.Si) ∼ σ0(λB.λAi,1.λAi,2.λAi,3.True) and thus

λσ0(True).σ0(Si) ∼ λσ0(B).λσ0(Ai,1).λσ0(Ai,2).λσ0(Ai,3).σ0(True)). Since σ0 is a solu-

tion of ∇3 we also have σ0(True) 6= σ0(B) and thus by the definition of alpha-equivalence

∼ the constraint σ0(True)#λσ0(Ai,1).λσ0(Ai,2).λσ0(Ai,3).σ0(True)) must hold. Since

(Γ,∇1 ∪∇3) satisfies the conditions of the claim, the theorem holds. 2

Nominal unification is an instance of variable atom nominal unification, if atom-

variables cannot be made equal by a solution (such a remark can also be found in (Lakin,

2011)):

Theorem 3.3. The variable-atom nominal unification problem (Γ,∇), where ∇ consists

of all possible A#B-freshness constraints, for all A 6= B occurring in Γ, is solvable in

polynomial time. Moreover, if (Γ,∇) is solvable then there is a most general unifier, which

can be computed in polynomial time.

11

Proof. Let (Γ,∇) be the VANUP . We can encode the problem into the nominal unifica-
tion problem Γ′ such that Γ′ is Γ where every atom-variable Ai occurring in Γ is replaced
by a fresh atom ai. Due to Theorem 2.6, in order to prove the first part, it suffices to
show that (Γ,∇) is solvable iff Γ′ is solvable.

Let us first assume that Γ′ is solvable, i.e. there exists a ground substitution ρ, s.t.
(eρ ∼ e′ρ) for all e

.
= e′ ∈ Γ′. Let ρ0 = ρ ∪ {Ai 7→ ai | Ai occurs in Γ}. Then ρ0 is a

solution for (Γ,∇).
Now assume that (Γ,∇) is solvable. Then there exists a ground substitution ρ s.t.

eρ ∼ e′ρ for all e
.
= e′ ∈ Γ and Aρ#Bρ for all A#B ∈ ∇. Clearly ρ must map each atom-

variable A to a unique atom a. Let ρS be the restriction of ρ to expression-variables and
let ρA be the restriction of ρ to atom-variables. Then clearly (up to a renaming of atoms)
the set Γ′ consists exactly of the equations eρA

.
= e′ρA (for all e

.
= e′ ∈ Γ) and ρS is a

solution of Γ.
The same construction can be used to show the second part of claim: Let (σa,∇a)

be a most general unifier of Γ′. Then let µ(ai) = Ai for i = 1, . . . , n be a mapping and
(σA,∇A) is defined such that σA = σa ◦ µ, restricted to the (atom- and expression-)
variables and ∇A := (∇a)µ. The claim is that (σA,∇A) is a most general unifier of
(Γ,∇). If ρ is a solution of (Γ,∇), then let bi = ρ(Ai) for i = 1, . . . , n be the atoms used
in ρ. Since the names of the atoms can be changed using a bijection mapping atoms to
atoms, using µ′(bi) = Ai for i = 1, . . . , n, the substitution ρµ′ (restricted to S-variables)
is the substitution ∇A of the unifier. The freshness constraints can be verified in the
same way. 2

Theorem 3.4. The variable-atom nominal unification problem is in NP.
Moreover, there is an exponential time algorithm to compute a complete set of unifiers
of polynomial size for every input.

Proof. Assume given a variable-atom nominal unification problem (Γ,∇). Then as a first
step, guess for all pairs A,B of atom-variables A,B occurring in AtVar(Γ,∇), whether
for a ground solution γ: γ(A) = γ(B) or γ(A) 6= γ(B). If γ(A) = γ(B), then replace A by
B in Γ and ∇, otherwise, add the freshness constraint A#B. This results in (Γ′,∇′). This
guessing and replacement can be done in polynomial time. Now for all atom-variable pairs
A,B occurring in Γ′, there is a freshness constraint A#B or B#A in ∇′. Now Theorem
3.3 shows that solvability of (Γ′,∇′) can be decided in polynomial time, and that a most
general unifier can be computed in polynomial time.

Scanning all possibilities results in a deterministic exponential-time algorithm for this
problem. 2

Theorems 3.1 and 3.4 imply:

Theorem 3.5. The variable-atom nominal unification problem is NP-complete.

However, if there are no freshness constraints at all, then solvability of VANUPs can
be checked efficiently, by instantiating all atom-variables with the same atom, and then
checking for solvability.

Theorem 3.6. Solvability of variable-atom nominal unification problems where ∇ = ∅
can be decided in polynomial time.

12

Proof. Let Γ be a variable atom nominal unification problem. Assume that Γ is solv-
able by a ground substitution γ that replaces atom-variables by atoms and expression-
variables by expressions from NLa. Then, the following structural equality ≡0 holds for
all equations s

.
= t after instantiation: sγ ≡0 tγ, where ≡0 is recursively defined as fol-

lows: a ≡0 b for all atoms a, b; λa.s ≡0 λb.t iff s ≡0 t, and f s1 . . . sn ≡0 f t1 . . . tn iff
si ≡0 ti for all i. This is equivalent to the statement that γ0 is a solution of Γ, where γ0
replaces all atom-variables by the same atom.

The latter condition can be checked algorithmically as follows:
First apply a translation ψ to Γ with the following definition, where lam is a fresh
unary function symbol, and a0 fresh atom. Let ψ(A) := a0 for all atom-variables A,
ψ(λa.e) := (lam (ψ(e)), and ψ(f e1 . . . ear(f)) := (f ψ(e1) . . . ψ(ear(f))). The result
is a first-order unification problem with variables S, and with the property that Γ is
solvable as variable atom nominal unification problem iff ψ(Γ) is solvable as a first-order
unification problem. This test can be performed in polynomial time, since first-order
unification is a polynomial time algorithm. 2

Note that the algorithm of Theorem 3.6 is a decision algorithm and that it is not
complete in general w.r.t. unifiers.

4. Nominal Unification Algorithm with Lazy Disequality Guessing

The goal of this section is to describe a solution algorithm for VANUPs of non-
deterministic polynomial time complexity, such that its collecting version has a small
number of solutions by using simplifications and by avoiding unnecessary (dis-)equality-
guessings for pairs A,B of atom-variables.

A difference to nominal unification is that in variable-atom nominal unification prob-
lems, besides suspensions π·S (as they occur in usual nominal unification (Urban et al.,
2003)), there are further expressions that cannot be simplified. For VANUPs, an atom-
variable suspension π·A can also in general not be simplified. However, if more is known
about equality and disequality of the atom-variables in π, then there are chances to fur-
ther simplify it. Also freshness constraints in NLAS can not in every case be brought into
a simpler form; for example A#(λB.e) cannot be further processed if the (dis-)equality
of A,B is unknown. The same holds for A#B, and A#(π · S).

A hazard is the instantiation of A with π·B, which potentially may generate (nested)
swappings like (π·B B′), which will produce too complex expressions in (Γ,∇). We will
avoid this in the following in (Γ,∇), but it may occur in the computed unifier.

The main ideas of the algorithm in this section are: (1) find out and store, which
atom-variable pairs are already known to be instantiated with different atoms; and (2)
indicate the pairs A,B of atom-variables, where a guessing of (dis-)equality of A,B makes
progress.
Examples for the justification of a guessing are: (i) equations of the form λA.e

.
= λB.e′,

(ii) freshness constraints of the form A#(λB.e), (iii) potential substitution components
A 7→ π·B, where A and B occur in swappings, (iv) suspensions π·S, where π has a large
number of swappings, and (v) expressions of the form π·A, where π cannot be further
simplified.

13

4.1. Properties of Atom-Variable Permutations

In this section we analyze properties of permutations on atom-variables, in particu-
lar that of the representation. We also analyze properties of permutations as part of a
VANUP, as far as these are required in the algorithm.

Let us assume that atom-variable permutations are represented as lists of atom-
variable swappings. The following properties hold for those permutations: Two permuta-
tions can be composed by concatenating the lists of the respective swappings; the inverse
π−1 of a permutation π is the reversed list of swappings of π; and (A A) and (A B)·(A B)
are the identity.

Note that this remains correct under replacing atom-variables by atom-variables (or
by atoms), which may make two different variables equal. However, further operations
which are correct on atom permutations may be wrong on atom-variable permutations:

Example 4.1. The permutation (a b) · (c d) · (a b) represents the same function as (c d),
since atoms with different names are always assumed to be different. Now consider the
permutation on atom-variables π = (A B) · (C D) · (A B). The permutation cannot
be replaced by (C D), since this is not valid for every instantiation: For example if
ρ(A) 6= ρ(B), ρ(A) 6= ρ(D), ρ(B) 6= ρ(D) , but ρ(B) = ρ(C), then ρ(π ·A) = ρ(D) while
ρ((C D) ·A) = ρ(A) 6= ρ(D).

The following example shows that the interpretation of permutations as functions
on atom-variables is not stable under instantiations. Thus, the usual interpretation as
functions is misleading. A better intuition is that atom-variable permutations are repre-
sentations of sets of atom permutations (after a substitution).

Example 4.2. Let π1 = (A B)·(B C) and let π2 = (A C)·(A B). Under an interpretation
as operating on different atom-variables, both permutations are the mapping {A 7→
B,B 7→ C,C 7→ A}. However, after the instantiation A = C, π1 is the identity, whereas
π2 = (A B).

Example 4.3. An example with a possible simplification of a permutation represented
with atom-variables is as follows:
The permutation (A B) · (C D) · (C A) · (C A) · (A B) can be simplified to (C D) under
the assumption ∇ ` {A,B}#{C,D} in the following steps:

(A B) · (C D) · (C A) · (C A) · (A B)

→ (A B) · (C D) · (A B)

→ (A B) · (A B) · (C D)

→ (C D)

For atom-variable permutations in contrast to atom permutations, it is unclear how
long lists of swappings can be shortened. So the unification algorithm has to prevent
exponential growth of the length of permutations, by reasoning about equivalent but
shorter representations and by guessing (dis-)-equality of atom-variable pairs A,B.

In the remainder of the paper we allow to write π·e for arbitrary NLAS-expressions,
where “·” means the following function to shift permutations downwards, if necessary.

14

Definition 4.4 (Shifting permutations downwards).

We define the function · by the following equations which shifts permutations π into

NLAS-expressions, if the application does not match the syntax of NLAS .

π·(f e1 . . . ear(f)) := (f π·e1 . . . π·ear(f))

π·(λA.e) := λ(π·A).(π·e)

Definition 4.5 (Simplification of permutation and application).

We assume now that π is over NLAS . Let there be a set ∇ of atom-variable freshness

constraints. Then the following simplifications or modifications of permutations or of

permutation applications can be performed. These are written as g
∇−→ g′. We also write

g
∇,∗−−→ g′ for its reflexive-transitive closure.

• (A A)
∇−→ ∅

• π
∇−→ π′ if ∇ ` #AtVar(π)

and where π′ is a representation of π as a function on atom-
variables where π′ has at most |#AtVar(π)|−1 swappings,
and strictly less swappings than π (see Remark 2.3).

• (π · (A B)) ·A ∇−→ π ·B

• (π · (C D)) ·A ∇−→ π ·A if ∇ ` A 6= C ∧A 6= D

We say a set of freshness constraints ∇ is standardized, if it only consists of elements

A#B and A#S.

Lemma 4.6. The simplification rules for permutations and applications (Definition 4.5)

are sound and strictly reduce the size of permutations.

Remark 4.7. Also the rewrite rule

π1 · π2 −→ π2 · π1 if ∇ ` AtVar(π1)#AtVar(π2)

is sound since every solution ρ of∇must instantiate π1 and π2 s.t. dom(π1ρ)∩dom(π2ρ) =

∅ and that πiρ are permutations. This and perhaps further sound modifications may be

advantageously used in implementations to simplify atom-variable permutations. How-

ever, since the rule is non-terminating, we do not add it to the relation
∇−→. 2

Lemma 4.6 implies the following proposition:

Proposition 4.8. The length n of any derivation π0
∇−→ π1

∇−→ . . .
∇−→ πn or π0·A

∇−→
π1·A1

∇−→ . . .
∇−→ πn·An is polynomially bounded in the size of π0.

Definition 4.9 (Simplification of Freshness Constraints). The following rewrite rules

15

#−→ allow to simplify (atom-variable) freshness constraints ∇:

• {A#(f e1 . . . ear(f))} ·∪∇
#−→ {A#e1, . . . , A#ear(f)} ·∪∇

• {A#(λA.e)} ·∪∇ #−→ ∇

• {A#e} ·∪∇ #−→ ∇ if e does not contain atom-variables

• {A#λB.e} ·∪∇ #−→ {A#e} ·∪∇ if ∇ ` A 6= B

• {A#(A B) · π·e} ·∪∇ #−→ {B#π·e} ·∪∇

• {A#(C D) · π·e} ·∪∇ #−→ {A#π·e} ·∪∇ if ∇ ` A#{C,D}

By inspecting the semantics of freshness constraints in NLAS the following lemma

holds:

Lemma 4.10. The simplification rules for freshness constraints in Definition 4.9 are

sound.

Lemma 4.11. The number of possible applications of the simplification rules for fresh-

ness constraints in Definition 4.9 is bounded polynomially in the size of ∇.

4.2. Preparatory Steps of the Algorithm

Definition 4.12 (Flattening). As a preparation for the unification algorithm, all ex-

pressions in equations are exhaustively flattened as follows: Every expression (f t1 . . . tn)

is replaced by (f S1 . . . Sn) and the equations S1
.
= t1, . . . , Sn

.
= tn are added, where Si

are fresh expression-variables. Also λA.e is replaced by λA.S with equation S
.
= e. The

introduced variables are always fresh ones. We denote the resulting set of equations of

flattening an equation eq as flat(eq).

Thus, all expressions in equations in the input to the algorithm can be assumed to be

flat, which means that they belong to the language generated by the following grammar:

evar ::= A | S | π·A | π·S and eflat ::= evar | (f evar,1 . . . evar,ar(f)) | λπ·A.evar. We will

see that flatness of equations is maintained during the algorithm.

4.3. Rules of the Algorithm AVNomUnify

The algorithm searches for unifiers, which are substitutions together with freshness

constraints for the introduced variables (see Definition 2.10).

AVNomUnify operates on a tuple (Γ,∇, θ) over NLAS , where Γ is a set of flattened

equations e1
.
= e2, and where we assume that

.
= is symmetric, ∇ contains freshness

constraints, θ represents the already computed substitution as a list of replacements of

the form X 7→ e (i.e. in so-called triangle-form). Initially θ is empty.

More rigorously, for an input VANUP (Γ0,∇0) the algorithm AVNomUnify starts

with (flat(Γ0),∇0, ∅). If unification does not fail, then the algorithm will output a pair

〈∇, θ〉 which is a unifier of (Γ0,∇0). The collecting variant of AVNomUnify, which

explores always both alternatives of (GuessEQ), outputs a set of unifiers.

16

Threshold Let size(Γ,∇) be the number of all occurrences of symbols S,A, f, λ in
(Γ,∇), where the atomic freshness constraints A#B are not counted. In order to control
the run of the algorithm, a threshold theq has to be chosen, which must be a polynomial
in N with theq ≥ 4N2 ∗ (Maxarity + 2) where N is the size of the input, and Maxarity
is the maximum of 2 and the maximal arity of function symbols in the input. The global
condition is that AVNomUnify cannot execute a unification rule, if after the execution
and exhaustive simplification the size is larger than the threshold, i.e. if size(Γ,∇) ≥ theq .

In the notation of the rules, we use [e/S] as substitution that replaces the expression-
variable S by expression e, and analogously, we use [A/B] (or π·A/B) if atom-variable
B is replaced by atom-variable A (or suspension π·A, respectively). Similarly, we write
[π1/π2] for the replacement of permutation π2 by permutation π1 and [π1 ·A1/π2 ·A2] for
the replacement of atom-variable suspension π2 ·A2 by atom-variable suspension π1 ·A1.
We will use a notation “|” in the consequence part of rule GuessEQ in order to separate
alternatives, to denote disjunctive (i.e. don’t know) non-determinism. The only non-
deterministic rule that requires exploring all alternatives is rule (GuessEQ) below. All
other rules can be applied in any order, where it is not necessary to explore alternatives.

Simplifications and Rewriting

(Rew1)
(Γ,∇, θ)

(Γ,∇, θ)[π′/π]
if π

∇−→ π′ (Rew2)
(Γ,∇, θ)

(Γ,∇, θ)[π′·A′/π·A]
if π·A ∇−→ π′·A′

(Simp)
(Γ,∇, θ)
(Γ,∇′, θ)

if ∇ #−→ ∇′ (see Definition 4.9)

Standard unification and decomposition rules: We assume that rules (SD3), (SD4a),
(SD4b), (SD4d), (SD6), and (VarFail) are also applicable if π = ∅. The substitution
∇[π·B/A] in rule (SD4a) replaces freshness constraints A#e in ∇ by B#π−1 · e[π·B/A],
and in rule (SD4b) B#e in ∇ is replaced by A#π · e[π−1·A/B].

(SD1)
(Γ ·∪{e .

= e},∇, θ)
(Γ,∇, θ)

(SD2)
(Γ ·∪{π · S .

= e},∇, θ)
(Γ ·∪{S .

= π−1 · e},∇, θ)
if e 6∈ ExVar(Γ,∇)

(SD3)
(Γ ·∪{S .

= π·X},∇, θ)
(Γ[π·X/S],∇[π·X/S], θ ∪ {S 7→ π·X})

if S 6= X, and where X is an atom- or an
expression-variable

(SD4a)
(Γ ·∪{A .

= π·B},∇, θ)
(Γ[π·B/A],∇[π·B/A], θ ∪ {A 7→ π·B})

if A and B are different atom-variables,
and A does not occur in π nor in a per-
mutation in (Γ,∇)

(SD4b)
(Γ ·∪{A .

= π·B},∇, θ)
(Γ[π−1·A/B],∇[π−1·A/B], θ ∪ {B 7→ π−1·A})

if A and B are different atom-
variables, and if B does not occur
in π nor in a permutation in (Γ,∇)

(SD4c)
(Γ ·∪{A .

= B},∇, θ)
(Γ[B/A],∇[B/A], θ ∪ {A 7→ B}) if A and B are different atom-variables

17

(SD4d)
(Γ ·∪{A .

= (A B)·π·A},∇, θ)
(Γ ·∪{B .

= π·A},∇, θ) if A and B are different atom-variables

(SD4e)
(Γ ·∪{A .

= (B C)·π·A},∇, θ)
(Γ ·∪{A .

= π·A},∇, θ)
if A,B,C are different atom-variables and
∇ ` A 6= B,A 6= C

(SD5)
(Γ ·∪{(f e1 . . . ear(f))

.
= (f e′1 . . . e

′
ar(f))},∇, θ)

(Γ ·∪{e1
.
= e′1, . . . , ear(f)

.
= e′ar(f)},∇, θ)

(SD6)
(Γ ·∪{λπ·A.e1

.
= λπ·A.e2},∇, θ)

(Γ ·∪{e1
.
= e2},∇, θ)

(SD7)
(Γ ·∪{λA.e1

.
= λB.e2},∇, θ)

(Γ ·∪{e1
.
= (A B)·e2},∇∪ {A#e2}, θ)

if ∇ ` A 6= B

(SD8)
(Γ ·∪{S .

= π · S},∇, θ)
(Γ,∇ ·∪{A#λπ·A.S | A ∈ AtVar(π)}, θ)

if π 6= Id

Guessing (Dis-)Equality of Atom-Variables:

The following rule is applied only, if no other rules apply.

(GuessEQ)
(Γ,∇, θ)

(Γ[A1/A2],∇[A1/A2], θ ∪ {A1 7→ A2}) | (Γ,∇ ·∪{A1#A2}, θ)
if A1, A2 occur
in Γ or ∇

Main Rules:

In the following rules, compound terms denote terms e, where tops(e) is not a vari-

able. The rule (MMS) is reminiscent of Martelli-Montanari-style of first-order unification

(Martelli and Montanari, 1982). For a discussion and comparison with other approaches

see (Calvès, 2013) and (Schmidt-Schauß et al., 2016).

(MMS)
(Γ ·∪{S .

= e1, . . . , S
.
= en},∇, θ)

(Γ ·∪{e1
.
= e2, . . . , e1

.
= en},∇, θ ∪ {S 7→ e1})

if ei are compound terms, and S
does not occur in Γ, and not in ei
for all i

(Output)
(∅,∇, θ)
〈∇, θ〉

if (∇, θ) is solvable using the algorithm AVSolNabla (see Def. 4.14),
otherwise Fail.

Note that the size of freshness constraints may be increased by rule (MMS). Note also

that elements of ∇ may still contain permutations.

The rule (Output) could also tell the successful choices made by AVSolNabla, but we

omit it. Our presentation renders the rule as complete.

18

Definition 4.13 (Failure Rules of AVNomUnify). The failure rules are:

(ClashFailure)
(Γ ·∪{e1

.
= e2},∇, θ)
Fail

if e1, e2 are not variables nor suspensions,
and tops(e1) 6= tops(e2)

(VarFail)
(Γ ·∪{π·A .

= e},∇, θ)
Fail

if tops(e) is a function symbol f or λ

(CycleDetection)
(Γ ·∪{S1

.
= e1, . . . , Sn

.
= en},∇, θ)

Fail

if all ei are neither variables nor sus-
pensions and Si+1 occurs in ei for i =
1, . . . , n− 1 and S1 occurs in en

(FreshnessFail)
(Γ,∇ ·∪{A#A}, θ)

Fail

4.4. Solving Freshness Constraints

We describe the algorithm AVSolNabla that solves problems where Γ = ∅, i.e.
freshness constraints together with a substitution θ.

Definition 4.14 (Sub-Algorithm AVSolNabla). The input is a pair (∇, θ) of a set
of atom-variable freshness constraints ∇ and a substitution θ, as constructed by the
algorithm AVNomUnify.
The following operations and rules are used (with empty Γ): (Simp), (Rew1), (Rew2), and
(FreshnessFail), together with the rules (GuessEQFC), (NSubst1), (NSubst2), (NSubst3),
and (Sat). The rules can only be applied if the size of ∇, after application of a rule and
simplifications, is not greater than theq .

(GuessEQFC)
(∇, θ)

(∇[A1/A2], θ[A1/A2]) | (∇ ·∪{A1#A2}, θ)

if A1, A2 occur in ∇ or in
θ, but not in the domain
of θ

(NSubst1)
(∇ ·∪{A#π · S}, θ ∪ {S 7→ e})
(∇ ·∪{A#π · e}, θ ∪ {S 7→ e}) if S does not occur in θ

(NSubst2)
(∇, θ ·∪{A 7→ B})
(∇[B/A], θ[B/A])

(NSubst3)
(∇, θ ·∪{V 7→ e})

(∇, θ)
if V (an A or S) does not occur in ∇ nor θ

(Sat)
(∇, θ)

“satisfiable”
if ∇ is standardized, θ is empty, and (FreshnessFail) is not applicable

This algorithms checks solvability of (∇, θ) by (non-deterministically) executing the rules
above until either Fail or “satisfiable” is returned.

The algorithm AVSolNabla treats θ (which is in triangle-form) like a compression
by a dag, and decompresses it step by step using (NSubst1), (NSubst2) and (NSubst3).

19

Rule (GuessEQFC) is a restricted version of rule (GuessEQ) s.t. guessing (dis-)equality
of atom-variables prevents a destruction of the structure of θ as a substitution.

4.5. Situations for Guessing (Dis-)Equality in AVNomUnify.

In the following situations, when no other rule is applicable, a pair A,B of atom-
variables is guessed as equal or not equal, where the pair can be selected according to
the following descriptions. We think that a good proposal for the priority of guessing is
the sequence below:

Lemma 4.15. If the algorithm AVNomUnify can only proceed with (GuessEQ), and a
guess of (dis-)equality is performed, then at least one of the following situations is valid.

(1) There is an equation λA.e1
.
= λB.e2, where (dis-)equality of A and B is unknown.

Then guess (dis-)equality of A,B.
(2) There is an equation λ(π·A).e1

.
= e2, where tops(e2) = λ, and (π·A) cannot be

further simplified. Then guess (dis-)equality of atom-variables in π using (8).
(3) There is an equation A

.
= π·A in Γ, where π cannot be removed. Then guess (dis-

)equality of atom-variables in π using (8).
(4) There is an equation S

.
= π·S in Γ, where π cannot be removed. Then guess (dis-

)equality of atom-variables in π using (8).
(5) In a freshness constraint A#π′B, or A#λπ′B.e, it is not known whether A = B

or A 6= B. Then guess (dis-)equality of A,B.
(6) An application of a rule would generate a permutation π such that the size of the

system exceeds the threshold theq; then guess (dis-)equality of one or more pairs of
atom-variables in π, such that π can be shortened afterwards.

(7) An instantiation of the form A 7→ π·B has to be performed, where A as well as B
occur in swappings; then guess (dis-)equality of some pair of atom-variables in π.

(8) There is a subexpression π · (C D)·A of (Γ,∇), where (dis-)equality of at least one
pair A,C and A,D is yet unknown, then we may guess this for the respective pair.

(9) A single application of (MMS) would make the size of the current state greater than
the threshold theq. Then apply (GuessEQ) in order to reduce the size.

4.6. Examples

First we look at the example in Remark 3.10 in (Urban et al., 2003), but see also
Example 2.12 for another treatment.

Example 4.16. The problem is to solve (A B) · C .
= C, where A,B,C are atom-

variables, i.e. (Γ,∇, θ) = ({(A B) · C .
= C}, ∅, ∅) at the beginning. The only applicable

rule is (GuessEQ), say for A,C:
(1) if A = C, then the problem degenerates to ({(C B) · C .

= C}, {A 7→ C}), which is
transformed into ({B .

= C}, ∅, {A 7→ C}), and then into (∅, ∅, {A 7→ C,B 7→ C})
which outputs a unifier ({A 7→ C,B 7→ C}, ∅).

(2) The other alternative is to add A#C, resulting in ({(A B) · C .
= C}, {A#C}, ∅).

Then again we have to apply (GuessEQ), say for B,C:
(a) If B = C, then we get the problem ({(A C) · C .

= C}, {A#C}, {B 7→ C})
which can first be simplified into ({A .

= C}, {A#C}, {B 7→ C}) and then
results in (∅, {C#C}, {A .

= C,B 7→ C}) which leads to Fail .

20

(b) If B#C, then we get the problem ({(A B) · C .
= C}, {A#C,B#C}, ∅) which

first results in ({C .
= C}, {A#C,B#C}, ∅) and then in (∅, {A#C,B#C}, ∅)

which is trivially solvable and thus the algorithms outputs (Id, {A#C,B#C}).
Thus, combining all non-deterministic runs, the algorithm outputs two unifiers: (∅, {A 7→
C,B 7→ C}) and ({A#C,B#C}, Id).

Example 4.17. Consider the example λx.λy.(S, x) = λy.λx.(x, S) (see Example 6.2 for
improvements). In our encoding this is the equation: λA.λB.(S,A)

.
= λB.λA.(A,S)

where we omit the flattening for better readability. The first step is to apply (GuessEQ):
1) Guess A 6= B: The steps are:

Γ ∇ θ

→ {λA.λB.(S,A)
.
= λB.λA.(A,S)} {A#B} ∅

→ {λB.(S,A)
.
= (A B)·λA.(A,S)} {A#λA.(B,S), A#B} ∅

→ {λB.(S,A)
.
= λB.(B, (A B)·S)} {A#B} ∅

→ {(S,A)
.
= (B, (A B)·S)} {A#B} ∅

→ {S .
= B,A

.
= (A B)·S} {A#B} ∅

→ {S .
= B, (A B)·A .

= S} {A#B} ∅

→ {S .
= B} {A#B} ∅

→ ∅ {A#B} {S 7→ B}

2) Guess A = B:

Γ ∇ θ

→ {λA.λA.(S,A)
.
= λA.λA.(A,S)} ∅ {B 7→ A}

→ {λA.(S,A)
.
= λA.(A,S)} ∅ {B 7→ A}

→ {(S,A)
.
= (A,S)} ∅ {B 7→ A}

→ {S .
= A} ∅ {B 7→ A}

→ ∅ ∅ {B 7→ A,S 7→ A}

Example 4.18. We consider the following VANUP as input:

({(A B)·(C D)·A .
= (C D)·(A B)·C, (A B)·C .

= (C D)·A}, {B#C})

We first guess whether A 6= C or A = C.
1) Guess A 6= C: The steps are:

Γ ∇ θ

→ (A B)·(C D)·A .
= (C D)·(A B)·C, (A B)·C .

= (C D)·A {A#C,B#C} ∅

→ (A B)·(C D)·A .
= (C D)·C,C .

= (C D)·A {A#C,B#C} ∅

→ (A B)·(C D)·A .
= D,C

.
= (C D)·A {A#C,B#C} ∅

21

Now we guess whether A = D or D 6= A:
1a) Guess D 6= A

Γ ∇ θ

→ {B .
= D,C

.
= (C D)·A} {A#C,B#C,D#A} ∅

→ {C .
= (C D)·A} {A#C,D#C,D#A} {B 7→ D}

→ {C .
= A} {A#C,D#C,D#A} {B 7→ D}

→ ∅ {A#A,D#A} {B 7→ D,C 7→ A}

→ Fail

1b) Guess D = A

Γ ∇ θ

→ {(A B)·(C A)·A .
= A,C

.
= (C A)·A} {A#C,B#C} {D 7→ A}

→ {(A B)·C .
= A,C

.
= C} {A#C,B#C} {D 7→ A}

→ {C .
= (A B)·A} {A#C,B#C} {D 7→ A}

→ {C .
= B} {A#C,B#C} {D 7→ A}

→ ∅ {A#B,B#B} {D 7→ A}

→ Fail

2) Guess A = C: The steps are:

Γ ∇ θ

→ {(A B)·(C D)·A .
= (C D)·(A B)·C, (A B)·C .

= (C D)·A} {B#C} ∅

→ {(A B)·(A D)·A .
= (A D)·(A B)·A, (A B)·A .

= (A D)·A} {B#A} {C 7→ A}

→ {(A B)·D .
= (A D)·B,B .

= D} {B#A} {C 7→ A}

→ {A .
= A} {B#A} {C 7→ A,D 7→ B}

→ ∅ {B#A} {C 7→ A,D 7→ B}

Example 4.19. A similar example can also be solved by a most general unifier in a
different way. This examples also shows that a unifier still may contain swappings for
atom-variables, where not every dis-equality is known.

The equation is (B C)·(C D)·A .
= (C D)·B. This equation can be transformed into

A
.
= (C D)·(B C)·(C D)·B, which results in a most general unifier:

({A 7→ (C D)·(B C)·(C D) ·B}, ∅).

5. Invariants, Soundness and Completeness

We show that for a threshold theq ≥ 4N2 ∗ (Maxarity + 2), the unification algorithm
does not get stuck.

22

In the following let S0 := (Γ0,∇0) be the initial problem and let the initial size be
N . We remind the reader that Maxarity is the maximum of 2 and the maximal arity of
function symbols that are used in the input problem.

Proposition 5.1. The algorithm AVNomUnify can be successfully executed with a
threshold theq ≥ 4N2 ∗ (Maxarity + 2), such that it does not lose any solution.

Proof. In order to prove the claim, we assume an intermediate state S that satisfies
the threshold condition, and a ground solution ρ. We show that the brute force guessing
leads to a unifier that covers ρ:
First we apply the rule (GuessEQ) until all (dis)-equalities of atom-variables are guessed
(according to ρ). This adds at most N2 freshness constraints of the form A#B, which
are not counted by the threshold-measure.

Since now all pairs of atom-variables A,B with A 6= B have a freshness constraint
A#B, we can apply simplifications, which do not increase the size, and implies that
simplified states that are successors of S now satisfy the following: (i) permutations
have at most N − 1 swappings, and (ii) there are no suspensions π·A. Furthermore, all
equations between two compound expressions can be transformed: using (SD5) for two
expressions with top function symbol, or using (SD6) and (SD7) for λA.e1

.
= λB.e2,

which do not increase the size, since e1, e2 are variables (after the guessing). For the
freshness constraints, the simplification and rewrite rules will transform them into the
form A#B or A#S, also not increasing the size. Hence there are at most N2 freshness
constraints. Application of the replacement rules shows that all equations of the form
X

.
= Y or X

.
= π·Y , where X,Y are atom- or expression-variables, can be removed from

Γ.
Let S ′ be the state with these properties, and in addition such that the failure rules do

not apply. The remaining equations are of the form π·S .
= e, where e is a compound ex-

pression. In order to estimate the size, we have to analyze the effect of (MMS)-applications
between S0 and S ′, where we only look for the number N(f, λ) of occurrences of function
symbols and λs in Γ: If there are n equations, removed by (MMS)-application, then n−1
equations between compound expressions are generated, which are then decomposed.
Hence an (MMS)-step with subsequent decomposition strictly decreases N(f, λ). Thus
the number of equations in S ′ is smaller than N .
Thus in Γ(S ′) there are at most N equations, where every equation is of size at most
2 + Maxarity + 2(N −1)(Maxarity + 1) ≤ 2N(Maxarity + 1), hence the size of Γ(S ′) is at
most 2N2 ∗ (Maxarity + 1). An (MMS)-step in S ′ on n equations may increase the size
by (n− 2) ∗ 2N ∗Maxarity , i.e. in general by at most 2N2 ∗Maxarity , summing up to a
most 4N2 ∗ (Maxarity + 1).

The size of ∇ where we only count A#S is at most N2, hence the total size remains
below N2 + 4N2 ∗ (Maxarity + 1), which is less than 4N2 ∗ (Maxarity + 2).

Hence every threshold theq ≥ 4N2 ∗ (Maxarity + 2) permits the algorithm to proceed.
Since we prove below that all rules are sound and complete, we have proved the claim. 2

We analyze the invariants of the algorithm AVNomUnify and show that it is sound
and runs in non-deterministic polynomial time, and that the determinized version outputs
a complete set of solutions.

23

Lemma 5.2. The algorithm AVNomUnify does not instantiate atom-variables in swap-
pings with suspensions, and it keeps the equation system Γ flattened.

Proof. The rules are constrained such that replacements of atom-variables within swap-
pings are only performed with atom-variables. Also only swappings of the form (A B)
will be generated. The replacements are such that variables are replaced by variables or
suspensions, hence flattening is kept. 2

Definition 5.3. We say a unification rule or a unification algorithm by transformations
is
sound if for every transformation S → S ′: if ρ is a solution of S ′, then ρ is also a solution

of S.
complete if for every state S: if ρ is a solution of S, then there is successor state S ′,

i.e. with S → S ′, such that ρ is also a solution of S ′.

Theorem 5.4. The algorithm AVNomUnify is sound and complete:

Proof. Soundness is obvious, since either conditions are added, or equality transforma-
tions are performed.
For completeness, let us assume that ρ is a solution before a transformation. We show (i)
that there is a possibility of execution such that ρ is a solution of the next state, (ii) that
there is no failure rule applicable, and (iii) that the rule (Output) will fire eventually.
The rule (GuessEQ) can guess according to whether Aρ = Bρ or not.
For all other rules with the exception of (SD7) and (SD8), it is easy to see that no solution
is lost, since these are either equality transformations or decompositions.

We check completeness of rule (SD7): Let ρ be a solution before the transformation.
Then Aρ 6= Bρ, and λ(Aρ).e1ρ ∼α λ(Bρ).e2ρ. Using the reasoning in NLaS , which is
the same as the calculus in Urban et al. (2003), and using the reasoning there, this
is equivalent to the condition Aρ#e2ρ and e1ρ ∼α (Aρ Bρ)·e2ρ. Hence ρ solves e1

.
=

(A B)·e2 and the added freshness constraint.
We check completeness of rule (SD8): If there is a solution ρ of the state before, i.e.

Sρ ∼ πρ·Sρ, then under the assumption that for all atom-variables A,B occurring in π,
we have Aρ 6= Bρ, then (in the same way as for nominal unification) alpha-equality can
only hold, if for all atom-variables A with Aρ 6= πρ(Aρ), Aρ does no occur free in Sρ,
which is equivalent to Aρ#Sρ. Hence the added freshness constraints are solved by ρ.

We check completeness of the failure rules: If there is a solution, then rule (Clash-
Failure) cannot fire, since the preconditions cannot be satisfied. Rule (VarFail) cannot
be applicable, since the solution ρ by definition maps atom-variables to atoms. The rule
(CycleDetection) can also not be applicable, since ρ is a solution, which contradicts the
existence of such a cycle: consider the sizes ai of the expression ei in such a cycle in the
solution. This would imply a set of inequations a1 > a2, . . . , an > a1, which is impossible.

The final argument is that Proposition 5.1 shows that there is no stuck state, even
using the threshold, hence finally the rule (Output) will fire, since ρ is also a solution of
the final freshness constraint. 2

Theorem 5.5. The algorithm AVSolNabla decides solvability of (∇, θ) in non-deter-
ministic polynomial time.

24

Proof. It is easy to check that the rules of AVSolNabla are sound and complete.
We explain why (Sat) is also complete: A set ∇ of freshness constraints in standardized
form without any freshness constraint A#A is satisfiable:. A ground substitution as
instance can be constructed by substituting all atom-variables with different atoms, and
by substituting fresh atoms for the not substituted expression-variables S.

We exploit that θ is constructed as a substitution, and thus without cycles. Note that
it can be seen as a dag used for compression. Note also that a naive expansion may lead
to an exponential size of ∇.

The size of ∇ can be kept below the threshold theq : At the start of AVSolNabla
the size is not greater than theq . All used rules with the exception of (NSubst1) do
not increase the size of (∇, θ). The strategy for (non-deterministically) solving (∇, θ) is
to first apply (GuessEQFC) as often as possible, and to delay (NSubst1). Since θ is a
substitution, this is possible by starting with substitution components A 7→ e, where the
atom-variables occurring in e are not in dom(θ). Guessing and applying simplifications
permits to transform such a component into the form A 7→ B, and then an application of
(NSubst2) removes this component. Since θ is a substitution, and since for components
A 7→ e, there are no occurrences of expression-variables in e, this can be done until
there are no more components A 7→ e in θ. Now (dis-) equality guessing can and will
be done for all remaining pairs of atom-variables. After this step, and simplifications,
all compound expressions are of the form λA.e1 or (f e1 . . . en), where ei are atom-
variables, or expression-variables, or suspensions of expression-variables, and moreover,
all permutations π in (∇, θ) are normalized: they have at most N − 1 swappings. Also,
since guessing is exhaustive, after simplification, ∇ is of size at most N2. A single step
(NSubst1) may increase the size of ∇ to at most N2 + 2Maxarity ∗N , which is less than
theq . Using immediate simplifications reduces the size of ∇ again to at most N2.

The first phase using guessing is polynomial. The second phase of applying (NSubst1)
multiple times is also polynomial, since the sequence of instantiations starts with the
topmost expression-variables S w.r.t. the substitutions θ, which guarantees polynomial
time of the rule application phase. Since the number of re-instantiations is at most
N ∗ theq , the running time of AVSolNabla is polynomial. 2

Theorem 5.6. The algorithm AVNomUnify runs in non-deterministic polynomial
time.
It decides solvability of the input in NP time. The collecting variant computes an at most
exponential set of unifiers where every unifier is of at most polynomial size.

Proof. We have to check the time for a single run of the algorithm AVNomUnify. We
assume that Γ is flattened.

The proof is structured according to table 1. The method of the proof is as follows: We
show that the rules with a X in column 1 are executed at most a polynomial number of
times. Then we go to the second column and only look for execution sequences without
execution of rules that are already dealt with in column 1. Similar for the other columns.

(1) We look for the rules crossed “X” in column 1: There is no rule that increases
the number of atom-variables nor the number of expression-variables. Hence the
number of applications of rules (SD3), (SD4a), (SD4b), (SD4c), (MMS) is at most

25

rule name(s) A,S-number sizeWoPi sizePie sizeSh

Rew1,Rew2 = = <

Simp ≤ = <

SD1 <

SD2 = <

SD3,SD4a,SD4b,SD4c X

SD4d,SD4e = = <

SD5,SD6,SD7,SD8 <

GuessEQ X

MMS X

Table 1. Proof structure and the effect of rules

N . The number of pairs of atom-variables is not greater than N2, since the algo-

rithm does not generate fresh atom-variables. Hence (GuessEQ) can only be applied

polynomially often.

(2) For column 2 we use the measure sizeWoPi(Γ), which is the size of expressions in Γ

ignoring the permutations. The threshold condition shows that sizeWoPi(Γ) is at

most polynomial in N . We only check sequences of applications of rules in {Rew1,

Rew2, Simp, SD1, SD2, SD4d, SD4e, SD5, SD6, SD7, SD8}. and see, that the size

sizeWoPi(Γ) is not increased during these subsequences, and that SD1, SD5, SD6,

SD7, SD8 strictly decrease this measure. Hence the number of applications of them

is at most polynomial. The remaining rules are {Rew1, Rew2, Simp, SD2, SD4d,

SD4e}.
(3) For column 3 the goal is to treat rule SD2. As a measure we use sizePie(Γ), the

number of equations in Γ of the form π·S .
= e. Now we inspect only sequences

of applications of rules from {Rew1, Rew2, Simp, SD2, SD4d, SD4e}. Measure

sizePie is strictly decreased by (SD2) and not increased by the other rules, hence

the number of applications of SD2 is polynomial.

The remaining rules are {Rew1, Rew2, Simp, SD4d, SD4e}.
(4) For column 4 the goal is to treat the remaining rules. As a measure we use

sizeSh(Γ,∇), which is defined as the sum of sizeSh of all expressions e1, e2 oc-

curring in equations e1
.
= e2: It is defined as sizeSh(π·X) := size(π·X) where X

may be A,S, and sizeSh(π·λe1.e2) := sizeSh(λe1.e2) + size(π) ∗ sizeWoPi(λe1.e2),

and sizeSh(π·(f e1 . . . en)) := sizeSh(f e1 . . . en) + size(π) ∗ sizeWoPi(f e1 . . . en).

For freshness constraints in ∇, it is defined as sizeSh(π·A#e) := 1 + size(π) ∗
sizeWoPi(e) + sizeSh(e), and sizeSh(A#e) := 1 + sizeSh(e). The threshold condi-

tion and the definition of the measure imply that sizeSh(Γ,∇) is at most polynomial

in N .

We only check sequences of applications of rules in {Rew1, Rew2, Simp, SD4d,

SD4e}: All rules application strictly decrease this measure, hence the number of

applications in a subsequence is polynomial

26

The structure of the proof now allows to conclude that the overall number of rule ap-
plications is polynomial, since a product of a fixed number of polynomials is itself a
polynomial. 2

Note that satisfiability of freshness constraints with atom-variables is NP-hard by
Theorem 3.1, hence the final test in case Γ = ∅, whether there are solutions at all, cannot
be done in (deterministic) polynomial time (unless P = NP).

27

6. Nominal Unification Variant with Most General Unifier

We describe a variant AVNomUnifyMGU of the unification algorithm that uses
the rules that transform the equations into a single representation, where the equation
part is solved, a substitution is generated, but the solvability of the resulting freshness
constraints is NP-complete. This idea is also used in Example 2.12.

Note that nested representations of permutations π are not generated in Algorithm
AVNomUnifyMGU.

We assume that all equations are flattened before the algorithm starts. This means
that abstractions and function applications in Γ are only of the form λπ·A.π′·S and
(f π1·S1 . . . πn·Sn) where equations of the form S

.
= e for fresh S may be added

if necessary. The rules are don’t-care non-deterministic, and thus it is not necessary to
explore alternatives. For complexity issues, we will assume that sharing is implicitly used,
in particular for the substitutions, which is in triangle-form.

We use (SD1), (SD2), (SD3), (SD4c), (SD5), (SD6), (SD8), (MMS) in Section 4.3, the
Failure rules, and the following rules:

(SD4MGU)
(Γ ·∪{π1·A

.
= π2·B},∇, θ)

(Γ,∇∪ {π1·A#λπ2·B.π1·A}, θ)

(SD7MGU)
(Γ ·∪{λπ1·A.e1

.
= λπ2·B.e2},∇, θ)

(Γ ·∪{e1
.
= (A′ B′)·e2},

∇∪ {A′#λπ1·A.A′, B′#λπ2·B.B′, A′#λB′.e2}, θ)

where A′, B′ are fresh

(SD7MGUsimp)
(Γ ·∪{λA.e1

.
= λB.e2},∇, θ)

(Γ ·∪{e1
.
= (A B)·e2}, ∇∪ {A#λB.e2}, θ)

The trick here is to encode equality of A and e as a freshness constraint A#λe.A.
Using the methods in this paper and since the application of the rules above do not lose
any solutions, no guessing is necessary, and since we assume that substitutions are not
applied, but shared, we obtain:

Proposition 6.1. For a solvable input constraint, the algorithm AVNomUnifyMGU
is sound and complete and generates a most general unifier. The algorithm requires poly-
nomial time and generates a representation of polynomial size, provided sharing is used.

Note that the rules (SD4MGU), (SD7MGU), and (SD7MGUsimp) could also be ap-
plied in the algorithm AVNomUnify.

Example 6.2. We reconsider Example 4.17 and its improvement by AVNomUnifyMGU.
The equation is λA.λB.(S,A)

.
= λB.λA.(A,S). We apply (SD7MGUsimp) and obtain:

({λB.(S,A)
.
= (B A)·λA.(A,S)}, {A#λB.λA.(A,S)}). The next steps are:

({λB.(S,A)
.
= λB.(B, (B A)·S)}, {A#λB.λA.(A,S)})

({(S,A)
.
= (B, (B A)·S)}, {A#λB.λA.(A,S)})

({S .
= B,A

.
= (B A)·S)}, {A#λB.λA.(A,S)})

({A .
= (B A)·B)}, {A#λB.λA.(A,B)}, {S 7→ B})

(∅, {A#λB.λA.(A,B)}, {S 7→ B})
A clever algorithm could detect that A#λB.λA.(A,B) is always true, and redundant.
Hence we get {S 7→ B} as most general unifier, which is like a union of the two unifiers
in Example 4.17.

28

7. Conclusion

Nominal unification is extended to problems where atom-variables are permitted. It is
shown that this extended problem class is NP-complete. A collecting algorithm with lazy
(dis-)equality guessing and with an extra threshold parameter to avoid size explosion is
constructed, which has a realistic chance to output less unifiers than using a simple guess-
ing strategy. We also showed that a (single) most general unifier is sufficient, however,
leaving freshness constraints that have to be solved. An implementation of the algorithm
is under way in order to experiment with optimizations and appropriate threshold func-
tions. Future research is to extend the algorithm to more expressive languages that can
also incorporate more constructs that occur in programming languages.

Acknowledgements

We thank the reviewers for their valuable remarks and their hints to previous works.

References

Ayala-Rincón, M., Fernández, M., Gabbay, M. J., Rocha-Oliveira, A. C., 2016. Checking
overlaps of nominal rewriting rules. Electron. Notes Theor. Comput. Sci. 323, 39–56.

Calvès, C., 2013. Unifying nominal unification. In: van Raamsdonk, F. (Ed.), Proceedings
of the 24th International Conference on Rewriting Techniques and Applications (RTA
2013). Vol. 21 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 143–
157.

Calvès, C., Fernández, M., 2008. A polynomial nominal unification algorithm. Theor.
Comput. Sci. 403 (2-3), 285–306.

Cheney, J., 2004a. The complexity of equivariant unification. In: Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (ICALP 2004).
Vol. 3142 of Lecture Notes in Comput. Sci. Springer-Verlag, pp. 332–344.

Cheney, J., 2004b. Nominal logic programming. Ph.D. thesis, Cornell University, Ithaca,
NY.

Cheney, J., 2010. Equivariant unification. J. Automat. Reason. 45 (3), 267–300.
Lakin, M. R., 2011. Constraint solving in non-permutative nominal abstract syntax. Log.

Methods Comput. Sci. 7 (3).
Levy, J., Villaret, M., 2008. Nominal unification from a higher-order perspective. In:

Voronkov, A. (Ed.), Proceedings of the 19th International Conference on Rewriting
Techniques and Applications (RTA 2008). Vol. 5117 of Lecture Notes in Comput. Sci.
Springer, pp. 246–260.

Levy, J., Villaret, M., 2010. An efficient nominal unification algorithm. In: Lynch, C.
(Ed.), Proceedings of the 21st International Conference on Rewriting Techniques and
Applications (RTA 2010). Vol. 6 of Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl, pp. 209–226.

Martelli, A., Montanari, U., 1982. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems 4 (2), 258–282.

Nipkow, T., Paulson, L. C., Wenzel, M., 2002. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Vol. 2283 of Lecture Notes in Comput. Sci. Springer.

Pitts, A., Feb. 2016. Nominal techniques. ACM SIGLOG News 3 (1), 57–72.

29

Pitts, A. M., 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York, NY, USA.

Schaefer, T. J., 1978. The complexity of satisfiability problems. In: Lipton, R. J.,
Burkhard, W. A., Savitch, W. J., Friedman, E. P., Aho, A. V. (Eds.), Proceedings
of the 10th Annual ACM Symposium on Theory of Computing (STOC 1978). ACM,
pp. 216–226.

Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M., 2016. Nominal unification of
higher order expressions with recursive let. In: LOPSTR 2016. Vol. 10184 of Lecture
Notes in Comput. Sci. Springer, to be published.

Schmidt-Schauß, M., Sabel, D., 2016. Unification of program expressions with recursive
bindings. In: Vidal, G. (Ed.), Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming (PPDP 2016). ACM, New York,
NY, USA, pp. 160–173.

Schmidt-Schauß, M., Schütz, M., Sabel, D., 2008. Safety of Nöcker’s strictness analysis.
J. Funct. Programming 18 (04), 503–551.

Urban, C., Kaliszyk, C., 2012. General bindings and alpha-equivalence in nominal Is-
abelle. Log. Methods Comput. Sci. 8 (2).

Urban, C., Pitts, A. M., Gabbay, M., 2003. Nominal unification. In: Computer Science
Logic, 17th International Workshop, CSL 2003, 12th Annual Conference of the EACSL,
and 8th Kurt Gödel Colloquium, KGC 2003, Proceedings. Vol. 2803 of Lecture Notes
in Comput. Sci. Springer, pp. 513–527.

30

