

A Call-by-Need Lambda Calculus with Scoped Work Decorations

David Sabel and Manfred Schmidt-Schauß

Goethe University Frankfurt am Main, Germany

ATPS 2016, Vienna, Austria

Reasoning on program transformations, like

$$\operatorname{map} f (\operatorname{map} g \ xs) \to \operatorname{map} (\lambda x. f \ (g \ x)) \ xs$$

Are transformations **optimizations** / **improvements**?

- w.r.t. time consumption, i.e. the number of computation steps
- in a core language of Haskell:
 - extended polymorphically typed lambda calculus
 - with call-by-need evaluation

Some Previous and Related Work

[Moran & Sands, POPL'99]:

Improvement theory in an untyped call-by-need lambda calculus

- counting based on an abstract machine semantics
- tick-algebra for modular reasoning on improvements
- no concrete technique for list induction proofs

[Hackett & Hutton, ICFP'14]:

Improvement for worker-wrapper-transformations

- based on Moran & Sands' tick algebra
- argue for the requirement of a typed language

[Schmidt-Schauß & S., PPDP'15, IFL'15]:

Improvement in call-by-need lambda calculi: untyped LR, typed LRP

- counting essential reduction steps of a small-step semantics
- core language with seq-operator
- proving list-laws being improvements, using work-decorations

Example:

```
\begin{array}{lll} s_1 &:= & \mathtt{letrec} \ xs=0 : xs \ \mathtt{in} \ xs \\ s_2 &:= & \mathtt{letrec} \ y=((\lambda x.x) \ \mathtt{0}), xs=y : y : xs \ \mathtt{in} \ xs \\ s_3 &:= & \mathtt{letrec} \ y=((\lambda x.x) \ \mathtt{0}), xs=y : ((\lambda x.x) \ y) : xs \ \mathtt{in} \ xs \\ s_4 &:= & \mathtt{letrec} \ xs=\lambda y.y : (xs \ y) \ \mathtt{in} \ (xs \ \mathtt{0}) \end{array}
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C: C[s] \downarrow \iff C[t] \downarrow$

Example:

```
\begin{array}{lll} s_1 &:= & \mathtt{letrec} \; xs = \mathtt{0} : xs \; \mathtt{in} \; xs \\ s_2 &:= & \mathtt{letrec} \; y = ((\lambda x.x) \; \mathtt{0}), xs = y : y : xs \; \mathtt{in} \; xs \\ s_3 &:= & \mathtt{letrec} \; y = ((\lambda x.x) \; \mathtt{0}), xs = y : ((\lambda x.x) \; y) : xs \; \mathtt{in} \; xs \\ s_4 &:= & \mathtt{letrec} \; xs = \lambda y.y : (xs \; y) \; \mathtt{in} \; (xs \; \mathtt{0}) \end{array}
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C: C[s] \downarrow \iff C[t] \downarrow$

- ullet For list-expressions r_1, r_2 define:
 - $r_1 \stackrel{R}{R} r_2$ iff $r_1 \sim_c (h_1:t_1)$, $r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \stackrel{R}{R} t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

Example:

```
s_1 := \text{letrec } xs = 0 : xs \text{ in } xs
s_2 := \text{letrec } y = ((\lambda x.x) \ 0), xs = y : y : xs \text{ in } xs
s_3 := \text{letrec } y = ((\lambda x.x) \ 0), xs = y : ((\lambda x.x) \ y) : xs \text{ in } xs
s_4 := \text{letrec } xs = \lambda y.y : (xs \ y) \text{ in } (xs \ 0)
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C : C[s] \downarrow \iff C[t] \downarrow$

- For list-expressions r_1, r_2 define:
 - $r_1 \stackrel{R}{R} r_2$ iff $r_1 \sim_c (h_1:t_1)$, $r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \stackrel{R}{R} t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

Example:

```
s_1 \sim_c 0:0:(\text{letrec } xs=0:xs \text{ in } xs)
s_2 := \text{letrec } y=((\lambda x.x) \ 0), xs=y:y:xs \text{ in } xs
s_3 := \text{letrec } y=((\lambda x.x) \ 0), xs=y:((\lambda x.x) \ y):xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y:(xs \ y) \text{ in } (xs \ 0)
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C: C[s] \downarrow \iff C[t] \downarrow$

- ullet For list-expressions r_1, r_2 define:
 - $r_1 \stackrel{R}{R} r_2$ iff $r_1 \sim_c (h_1:t_1)$, $r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \stackrel{R}{R} t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

Example:

```
s_1 \sim_c 0:0:(\text{letrec } xs=0:xs \text{ in } xs)
s_2 := \text{letrec } y=((\lambda x.x) \text{ 0}), xs=y:y:xs \text{ in } xs
s_3 := \text{letrec } y=((\lambda x.x) \text{ 0}), xs=y:((\lambda x.x) \text{ y}):xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y:(xs y) \text{ in } (xs \text{ 0})
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C : C[s] \downarrow \iff C[t] \downarrow$

- For list-expressions r_1, r_2 define:
 - $r_1 \ {\color{red}R} \ r_2 \ {\rm iff} \ r_1 \sim_c (h_1:t_1), \ r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \ {\color{red}R} \ t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

Example:

```
s_1 \sim_c 0:0:(\text{letrec } xs=0:xs \text{ in } xs)
s_2 \sim_c 0:0:(\text{letrec } xs=0:0:xs \text{ in } xs)
s_3 := \text{letrec } y=((\lambda x.x) \ 0), xs=y:((\lambda x.x) \ y):xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y:(xs \ y) \text{ in } (xs \ 0)
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C : C[s] \downarrow \iff C[t] \downarrow$

- For list-expressions r_1, r_2 define:
 - $r_1 \stackrel{R}{R} r_2$ iff $r_1 \sim_c (h_1:t_1)$, $r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \stackrel{R}{R} t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

Example:

```
s_1 \sim_c 0:0:(\text{letrec } xs=0:xs \text{ in } xs)
s_2 \sim_c 0:0:(\text{letrec } xs=0:0:xs \text{ in } xs)
s_3 := \text{letrec } y=((\lambda x.x) \ 0), xs=y:((\lambda x.x) \ y):xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y:(xs \ y) \text{ in } (xs \ 0)
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C : C[s] \downarrow \iff C[t] \downarrow$

- ullet For list-expressions r_1, r_2 define:
 - $r_1 \ {\color{red}R} \ r_2 \ {\rm iff} \ r_1 \sim_c (h_1:t_1), \ r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \ {\color{red}R} \ t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

Example:

```
s_1 \sim_c 0:0:(\text{letrec } xs=0:xs \text{ in } xs)
s_2 \sim_c 0:0:(\text{letrec } xs=0:0:xs \text{ in } xs)
s_3 \sim_c 0:0:(\text{letrec } xs=0:0:xs \text{ in } xs)
s_4 := \text{letrec } xs=\lambda y.y:(xs y) \text{ in } (xs 0)
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C: C[s] \downarrow \iff C[t] \downarrow$

- For list-expressions r_1, r_2 define:
 - $r_1 \stackrel{\textbf{R}}{\textbf{R}} r_2 \text{ iff } r_1 \sim_c (h_1:t_1), \quad r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \stackrel{\textbf{R}}{\textbf{R}} t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

Motivation: Equational Reasoning for List-Expressions Motivation: Equational Reasoning for List-Expressions

Example:

```
s_1 \sim_c 0:0:(\text{letrec } xs=0:xs \text{ in } xs)
s_2 \sim_c 0:0:(\text{letrec } xs=0:0:xs \text{ in } xs)
s_3 \sim_c 0:0:(\text{letrec } xs=0:0:xs \text{ in } xs)
s_4 := \text{letrec } xs=\lambda y.y:(xs y) \text{ in } (xs 0)
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C: C[s] \downarrow \iff C[t] \downarrow$

- For list-expressions r_1, r_2 define:
 - $r_1 \stackrel{R}{R} r_2$ iff $r_1 \sim_c (h_1:t_1)$, $r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \stackrel{R}{R} t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(\mathbb{R}) r_2 \implies r_1 \sim_c r_2$

Motivation: Equational Reasoning for List-Expressions Motivation: Equational Reasoning for List-Expressions

Example:

```
\begin{array}{lll} s_1 & \sim_c & \text{0:0:(letrec } xs{=}0:xs \text{ in } xs) \\ s_2 & \sim_c & \text{0:0:(letrec } xs{=}0:0:xs \text{ in } xs) \\ s_3 & \sim_c & \text{0:0:(letrec } xs{=}0:0:xs \text{ in } xs) \\ s_4 & \sim_c & \text{0:0:(letrec } xs{=}\lambda y.y:(xs \ y) \text{ in } (xs \ 0)) \end{array}
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C : C[s] \downarrow \iff C[t] \downarrow$

- For list-expressions r_1, r_2 define:
 - $r_1 \stackrel{R}{R} r_2$ iff $r_1 \sim_c (h_1:t_1)$, $r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \stackrel{R}{R} t_2$
- Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

Motivation: Equational Reasoning for List-Expressions WALL CONTROL OF THE PROPERTY OF THE PROP

Example:

```
s_1 \sim_c 0:0:(\text{letrec } xs=0:xs \text{ in } xs)
s_2 \sim_c 0:0:(\text{letrec } xs=0:0:xs \text{ in } xs)
s_3 \sim_c 0:0:(\text{letrec } xs=0:0:xs \text{ in } xs)
s_4 \sim_c 0:0:(\text{letrec } xs=\lambda y.y:(xs y) \text{ in } (xs 0))
further processing with the tails indeed shows s_i \sim_c s_i
```

Contextual equivalence: $s \sim_c t$ iff \forall contexts $C: C[s] \downarrow \iff C[t] \downarrow$

- For list-expressions r_1, r_2 define:
 - $r_1 \ R \ r_2$ iff $r_1 \sim_c (h_1:t_1)$, $r_2 \sim_c (h_2:t_2)$ such that $h_1 \sim_c h_2$ and $t_1 \ R \ t_2$
 - Principle of co-induction: $r_1 \operatorname{gfp}(R) r_2 \implies r_1 \sim_c r_2$

In [Schmidt-Schauß & S., IFL 2015]:

- analogous reasoning,
- but w.r.t. improvement and cost-equivalence

Improvement and Cost-Equivalence

Improvement:

 $s \preceq t \text{ iff } s \sim_c t \text{ and } \forall \text{ closing contexts } C: \mathtt{rln}(C[s]) \leq \mathtt{rln}(C[t])$

where $\mathtt{rln}(\cdot)$ is the reduction length, counting essential reduction steps

Cost-Equivalence:

 $s \approx t \text{ iff } s \leq t \text{ and } t \leq s$


```
\begin{array}{lll} s_1 \; := \; \mathsf{letrec} \; xs{=}0 : xs \; \mathsf{in} \; xs \\ s_2 \; := \; \mathsf{letrec} \; y{=}((\lambda x.x) \; \mathsf{0}), xs{=}y : y : xs \; \mathsf{in} \; xs \\ s_3 \; := \; \mathsf{letrec} \; y{=}((\lambda x.x) \; \mathsf{0}), xs{=}y : ((\lambda x.x) \; y) : xs \; \mathsf{in} \; xs \\ s_4 \; := \; \mathsf{letrec} \; xs{=}\lambda y.y : (xs \; y) \; \mathsf{in} \; (xs \; \mathsf{0}) \end{array}
```



```
\begin{array}{lll} s_1 \; := \; \mathsf{letrec} \; xs{=}0 : xs \; \mathsf{in} \; xs \\ s_2 \; := \; \mathsf{letrec} \; y{=}((\lambda x.x) \; \mathsf{0}), xs{=}y : y : xs \; \mathsf{in} \; xs \\ s_3 \; := \; \mathsf{letrec} \; y{=}((\lambda x.x) \; \mathsf{0}), xs{=}y : ((\lambda x.x) \; y) : xs \; \mathsf{in} \; xs \\ s_4 \; := \; \mathsf{letrec} \; xs{=}\lambda y.y : (xs \; y) \; \mathsf{in} \; (xs \; \mathsf{0}) \end{array}
```



```
\begin{array}{lll} s_1 & \approx & 0:0: (\texttt{letrec} \ xs = 0: xs \ \texttt{in} \ xs) \\ s_2 & := & \texttt{letrec} \ y = ((\lambda x.x) \ \texttt{0}), xs = y: y: xs \ \texttt{in} \ xs \\ s_3 & := & \texttt{letrec} \ y = ((\lambda x.x) \ \texttt{0}), xs = y: ((\lambda x.x) \ y): xs \ \texttt{in} \ xs \\ s_4 & := & \texttt{letrec} \ xs = \lambda y.y: (xs \ y) \ \texttt{in} \ (xs \ \texttt{0}) \end{array}
```



```
\begin{array}{l} s_1 \ \approx \ \texttt{0} : \texttt{0} : (\texttt{letrec} \ xs = \texttt{0} : xs \ \texttt{in} \ xs) \\ s_2 \ := \ \texttt{letrec} \ y = ((\lambda x.x) \ \texttt{0}), xs = y : y : xs \ \texttt{in} \ xs \\ s_3 \ := \ \texttt{letrec} \ y = ((\lambda x.x) \ \texttt{0}), xs = y : ((\lambda x.x) \ y) : xs \ \texttt{in} \ xs \\ s_4 \ := \ \texttt{letrec} \ xs = \lambda y.y : (xs \ y) \ \texttt{in} \ (xs \ \texttt{0}) \end{array}
```


Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx \text{letrec } y=0^{[1]}, xs=y: y: xs \text{ in } xs
s_3 := \text{letrec } y=((\lambda x.x) \text{ 0}), xs=y: ((\lambda x.x) \text{ y}): xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y: (xs \text{ y}) \text{ in } (xs \text{ 0})
```

Work-decorations to keep track of rln-work:

• [n] := n essential reduction steps

Equational reasoning w.r.t. cost equivalence:

```
\begin{array}{lll} s_1 &\approx 0:0:(\texttt{letrec}\ xs{=}0:xs\ \texttt{in}\ xs) \\ s_2 &\approx \texttt{letrec}\ xs{=}0^{[a\mapsto 1]}:0^{[a\mapsto 1]}:xs\ \texttt{in}\ xs \\ s_3 &:= \texttt{letrec}\ y{=}((\lambda x.x)\ \texttt{0}),xs{=}y:((\lambda x.x)\ y):xs\ \texttt{in}\ xs \\ s_4 &:= \texttt{letrec}\ xs{=}\lambda y.y:(xs\ y)\ \texttt{in}\ (xs\ \texttt{0}) \end{array}
```

- ullet [n]:=n essential reduction steps
- $ullet [a\mapsto n] := n$ shared essential reduction steps (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 := \text{letrec } y=((\lambda x.x) \ 0), xs=y: ((\lambda x.x) \ y): xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y: (xs \ y) \text{ in } (xs \ 0)
```

- ullet [n]:=n essential reduction steps
- $ullet [a\mapsto n] := n$ shared essential reduction steps (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 := \text{letrec } y=((\lambda x.x) \ 0), xs=y: ((\lambda x.x) \ y): xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y: (xs \ y) \text{ in } (xs \ 0)
```

- ullet [n]:=n essential reduction steps
- $ullet [a\mapsto n] := n$ shared essential reduction steps (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx \text{letrec } y=0^{[1]}, xs=y: ((\lambda x.x) \ y): xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y: (xs \ y) \text{ in } (xs \ 0)
```

- ullet [n]:=n essential reduction steps
- $ullet [a\mapsto n] := n$ shared essential reduction steps (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx \text{letrec } xs=0^{[a\mapsto 1]}: ((\lambda x.x) \ 0^{[a\mapsto 1]}): xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y: (xs \ y) \text{ in } (xs \ 0)
```

- ullet [n]:=n essential reduction steps
- $ullet [a\mapsto n] := n$ shared essential reduction steps (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx \text{letrec } xs=0^{[a\mapsto 1]}: (0^{[a\mapsto 1]})^{[1]}: xs \text{ in } xs
s_4 := \text{letrec } xs=\lambda y.y: (xs y) \text{ in } (xs 0)
```

- ullet [n]:=n essential reduction steps
- $ullet [a\mapsto n] := n$ shared essential reduction steps (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1,b\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1,b\mapsto 1]}: xs \text{ in } xs)
s_4 := \text{letrec } xs=\lambda y.y: (xs y) \text{ in } (xs 0)
```

- ullet [n]:=n essential reduction steps
- $\bullet \ ^{[a\mapsto n]} := n \ \text{shared essential reduction steps}$ (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
\begin{array}{lll} s_1 & \approx & 0:0: (\texttt{letrec} \ xs = \texttt{0} : xs \ \texttt{in} \ xs) \\ s_2 & \approx & 0^{[a \mapsto 1]} : 0^{[a \mapsto 1]} : (\texttt{letrec} \ xs = \texttt{0}^{[a \mapsto 1]} : 0^{[a \mapsto 1]} : xs \ \texttt{in} \ xs) \\ s_3 & \approx & 0^{[a \mapsto 1]} : (0^{[a \mapsto 1, b \mapsto 1]}) : (\texttt{letrec} \ xs = \texttt{0}^{[a \mapsto 1]} : 0^{[a \mapsto 1, b \mapsto 1]} : xs \ \texttt{in} \ xs) \\ s_4 & := & \texttt{letrec} \ xs = \lambda y.y : (xs \ y) \ \texttt{in} \ (xs \ 0) \end{array}
```

- [n] := n essential reduction steps
- $\bullet \ ^{[a\mapsto n]} := n \ \text{shared essential reduction steps}$ (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx 0^{[a\mapsto 1]}: (0^{[a\mapsto 1,b\mapsto 1]}): (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1,b\mapsto 1]}: xs \text{ in } xs)
s_4 \approx \text{letrec } xs=\lambda y.y: (xs y) \text{ in } ((\lambda y.y: (xs y)) \text{ 0})
```

- ullet [n]:=n essential reduction steps
- $\bullet \ ^{[a\mapsto n]} := n \ \text{shared essential reduction steps}$ (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx 0^{[a\mapsto 1]}: (0^{[a\mapsto 1,b\mapsto 1]}): (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1,b\mapsto 1]}: xs \text{ in } xs)
s_4 \approx \text{letrec } xs=\lambda y.y: (xs y) \text{ in } (0: (xs 0))^{[1]}
```

- [n] := n essential reduction steps
- $\bullet^{\ [a\mapsto n]} := n \text{ shared essential reduction steps}$ (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx 0^{[a\mapsto 1]}: (0^{[a\mapsto 1,b\mapsto 1]}): (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1,b\mapsto 1]}: xs \text{ in } xs)
s_4 \approx \text{letrec } xs=\lambda y.y: (xs\ y) \text{ in } (0: ((\lambda y.y: (xs\ y))\ 0))^{[1]}
```

- [n] := n essential reduction steps
- $\bullet^{\ [a\mapsto n]} := n \text{ shared essential reduction steps}$ (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx 0^{[a\mapsto 1]}: (0^{[a\mapsto 1,b\mapsto 1]}): (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1,b\mapsto 1]}: xs \text{ in } xs)
s_4 \approx \text{letrec } xs=\lambda y.y: (xs y) \text{ in } (0: (0: (xs 0))^{[1]})^{[1]}
```

- [n] := n essential reduction steps
- $\bullet^{\ [a\mapsto n]} := n \text{ shared essential reduction steps}$ (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
egin{array}{lll} s_1 &pprox 0:0: (	ext{letrec } xs{=}0: xs 	ext{ in } xs) \ s_2 &pprox 0^{[a{\mapsto}1]}: 0^{[a{\mapsto}1]}: (	ext{letrec } xs{=}0^{[a{\mapsto}1]}: 0^{[a{\mapsto}1]}: xs 	ext{ in } xs) \ s_3 &pprox 0^{[a{\mapsto}1]}: (0^{[a{\mapsto}1,b{\mapsto}1]}): (	ext{letrec } xs{=}0^{[a{\mapsto}1]}: 0^{[a{\mapsto}1,b{\mapsto}1]}: xs 	ext{ in } xs) \ s_4 &pprox (0: (0: 	ext{letrec } xs{=}\lambda y.y: (xs y) 	ext{ in } (xs 0))^{[1]})^{[1]} \ \end{array}
```

- [n] := n essential reduction steps
- $\bullet^{\ [a\mapsto n]} := n \text{ shared essential reduction steps}$ (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

- [n] := n essential reduction steps
- $\bullet \ ^{[a\mapsto n]} := n \ \text{shared essential reduction steps}$ (label a marks the sharing)

Equational reasoning w.r.t. cost equivalence:

```
s_1 \approx 0:0: (\text{letrec } xs=0: xs \text{ in } xs)
s_2 \approx 0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1]}: xs \text{ in } xs)
s_3 \approx 0^{[a\mapsto 1]}: (0^{[a\mapsto 1,b\mapsto 1]}): (\text{letrec } xs=0^{[a\mapsto 1]}: 0^{[a\mapsto 1,b\mapsto 1]}: xs \text{ in } xs)
s_4 \approx (0: (0: \text{letrec } xs=\lambda y.y: (xs y) \text{ in } (xs 0))^{[1]})^{[1]}
further processing shows s_1 \prec s_2 \prec s_3 \prec s_4
```

Work-decorations to keep track of rln-work:

- [n] := n essential reduction steps
- $[a \mapsto n] := n$ shared essential reduction steps (label a marks the sharing)

Goal of current paper:

Define and analyze the exact semantics of $^{[a\mapsto n]}$

Our Contribution

- ullet Exact semantics of (shared) work-decorations $^{[a\mapsto n]}$ (and $^{[n]}$)
- Prove computation rules, like $S[s^{[a\mapsto n]},t^{[a\mapsto n]}] \preceq S[s,t]^{[n]}$
- The notation $[a\mapsto n]$ is **ambiguous**, e.g. in letrec $x=\lambda y.s^{[a\mapsto n]}$ in C[x] when inlining the binding for x:

Possibilities:

- letrec $x = \lambda y.s^{[a \mapsto n]}$ in $C[\lambda y.s^{[a \mapsto n]}]$
- letrec $x = \lambda y.s^{[a\mapsto n]}$ in $C[\lambda y.s^{[b\mapsto n]}]$ (where b is fresh)

Our Contribution

- ullet Exact semantics of (shared) work-decorations $^{[a\mapsto n]}$ (and $^{[n]}$)
- Prove computation rules, like $S[s^{[a\mapsto n]},t^{[a\mapsto n]}] \preceq S[s,t]^{[n]}$
- The notation $[a\mapsto n]$ is **ambiguous**, e.g. in letrec $x=\lambda y.s^{[a\mapsto n]}$ in C[x] when inlining the binding for x:

Possibilities:

- letrec $x = \lambda y.s^{[a \mapsto n]}$ in $C[\lambda y.s^{[a \mapsto n]}]$
- letrec $x = \lambda y.s^{[a\mapsto n]}$ in $C[\lambda y.s^{[b\mapsto n]}]$ (where b is fresh)
- We change the notation to add a scoping for work-decorations:

Instead of $[a\mapsto n]$ we use a **binding** a:=n and a **label** [a]

Our Contribution

- ullet Exact semantics of (shared) work-decorations $^{[a\mapsto n]}$ (and $^{[n]}$)
- Prove computation rules, like $S[s^{[a\mapsto n]},t^{[a\mapsto n]}] \preceq S[s,t]^{[n]}$
- The notation $[a\mapsto n]$ is **ambiguous**, e.g. in letrec $x=\lambda y.s^{[a\mapsto n]}$ in C[x] when inlining the binding for x:

Possibilities:

- letrec $x = \lambda y.s^{[a \mapsto n]}$ in $C[\lambda y.s^{[a \mapsto n]}]$
- letrec $x = \lambda y.s^{[a\mapsto n]}$ in $C[\lambda y.s^{[b\mapsto n]}]$ (where b is fresh)
- We change the notation to add a scoping for work-decorations:

Instead of $[a\mapsto n]$ we use a **binding** a:=n and a **label** [a]

- Examples:
 - letrec $a := n, x = \lambda y.s^{[a]}$ in C[x]
 - letrec $x = \lambda y$.(letrec a := n in $s^{[a]}$) in C[x]

The Calculus LRPw

LRPw extends LRP by work decorations

Types:

```
\tau \in Typ ::= A \mid (\tau_1 \to \tau_2) \mid K \tau_1 \dots \tau_{\operatorname{ar}(K)}

\rho \in PTyp ::= \tau \mid \lambda A.\rho
```

Expressions:

```
\begin{array}{lll} u \in PExpr_F & ::= \Lambda A_1 \ldots \Lambda A_k . \lambda x.s \\ s,t \in Expr_F & ::= u \mid x :: \rho \mid (s \ \tau) \mid (s \ t) \mid (\text{seq} \ s \ t) \\ & \mid & (\text{letrec} \ bind_1, \ldots, bind_m \ \text{in} \ t) \\ & \mid & (c_{K,i} :: \tau \ s_1 \ \ldots \ s_{\operatorname{ar}(c_{K,i})}) \\ & \mid & (\operatorname{case}_K \ s \ \text{of} \ (pat_{K,1} \mathop{\rightarrow} t_1) \ldots (pat_{K,|D_K|} \mathop{\rightarrow} t_{|D_K|})) \\ & \mid & s^{[a]}, \text{where} \ a \ \text{is a label} \\ \\ pat_{K,i} & ::= (c_{K,i} :: \tau \ x_1 :: \tau_1 \ldots x_{\operatorname{ar}(c_{K,i})} :: \tau_{\operatorname{ar}(c_{K,i})}) \\ & bind_i & ::= x_i :: \rho_i = s_i \mid a := n, \text{where} \ n \in \mathbb{N} \ \text{and} \ a \ \text{is a label} \end{array}
```

The Calculus LRPw: Operational Semantics

Normal Order Reduction \xrightarrow{LRPw}

- Small-step reduction relation
- ullet Call-by-need strategy using reduction contexts R
- Several reduction rules, e.g.

```
(lbeta) ((\lambda x.s)\ t) \to \text{letrec}\ x = t \text{ in } s (cp-in) \text{letrec}\ x_1 = (\lambda y.t), \{x_i = x_{i-1}\}_{i=2}^m, Env \text{ in } C[x_m] \to \text{letrec}\ x_1 = (\lambda y.t), \{x_i = x_{i-1}\}_{i=2}^m, Env \text{ in } C[(\lambda y.t)] (seq-c) (seq v\ t) \to t if v is a value (case-c) \text{case}_K\ (c\ t_1 \dots t_n) \dots ((c\ y_1 \dots y_n) \to s) \dots \to \text{letrec}\ \{y_i = t_i\}_{i=1}^n \text{ in } s ... (letwn) \text{letrec}\ \dots a := n \dots C[(s^{[a]})] \to \text{letrec}\ \dots a := n-1 \dots C[s^{[a]}] (letw0) \text{letrec}\ \dots a := 0 \dots C[s]
```

Contextual Equivalence in LRPw

Convergence

A weak head normal form (WHNF) is

- a value: $\lambda x.s$, $\Lambda A.u$, or \overrightarrow{cs} .
- letrec Env in v, where v is a value
- letrec $x_1 = \overrightarrow{cs}, \{x_i = x_{i-1}\}_{i=2}^m, Env \text{ in } x_m$

Convergence:

- $s \downarrow t$ iff $s \xrightarrow{\text{LRPw},*} t \land t$ is a WHNF
- $s \downarrow \text{ iff } \exists t : s \downarrow t.$

Contextual Equivalence

For $s,t::\rho$, $s\sim_c t$ iff for all contexts $C[\cdot::\rho]:C[s]\downarrow\iff C[t]\downarrow$

Program transformation P is correct iff $\left(s \xrightarrow{P} t \implies s \sim_c t\right)$

Improvement in LRPw

Counting Essential Reductions

For $\{lbeta, letwn\} = A_0 \subseteq A \subseteq \mathfrak{A} = \{lbeta, case, seq, letwn\}$:

$$\mathtt{rln}_A(t) := \left\{ egin{array}{ll} \mathsf{number of } A \mathsf{-reductions in } t & \xrightarrow{\mathtt{LRPw},*} t', & \mathsf{if } t \downarrow t' \\ \infty, & \mathsf{otherwise} \end{array}
ight.$$

Improvement Relation

For $s, t :: \rho$, s improves t (written $s \leq_A t$) iff

- $s \sim_c t$, and
- for all $C[\cdot :: \rho]$ s.t. C[s], C[t] are closed: $\mathtt{rln}_A(C[s]) \leq \mathtt{rln}_A(C[t]).$

We write $s \approx_A t \iff s \leq_A t \land t \leq_A s$ (cost-equivalence)

Program transformation P is an **improvement** iff $s \xrightarrow{P} t \implies t \leq_A s$

Do Work-Decorations Change the Semantics?

Questions:

- Is there a change w.r.t. contextual equivalence?
- Is there a change w.r.t. improvement and cost-equivalence?

Q1: Is there a change w.r.t. contextual equivalence?

No, since:

Theorem

The embedding of LRP into LRPw w.r.t. \sim_c is conservative and the calculi LRP and LRPw are isomorphic: The isomorphism is $[s]_{\sim_{c,\mathrm{LRPw}}} = [\mathrm{rmw}(s)]_{\sim_{c,\mathrm{LRP}}}$ where $\mathrm{rmw}(\cdot)$ removes the decorations.

Q2: Is there a change w.r.t. cost-equivalence?

No, if (seq)-reductions do not count for rln:

Theorem

Let $A_0 \subseteq A \subset \mathfrak{A}$, such that $seq \notin A$.

Then LRP and LRPw are isomorphic w.r.t. \approx_A .

Encode letrec a:=n, Env in s as letrec $x_a:=\mathrm{id}^{n+1}, Env[\mathrm{seq}\ x_a\ t/t^{[a]}]$ in $s[\mathrm{seq}\ x_a\ t/t^{[a]}]$

Q2: Is there a change w.r.t. cost-equivalence?

No, if (seq)-reductions do not count for rln:

Theorem

Let $A_0 \subseteq A \subset \mathfrak{A}$, such that $seq \notin A$.

Then LRP and LRPw are isomorphic w.r.t. \approx_A .

Encode letrec a:=n, Env in s as letrec $x_a:=\mathrm{id}^{n+1}, Env[\mathrm{seq}\ x_a\ t/t^{[a]}]$ in $s[\mathrm{seq}\ x_a\ t/t^{[a]}]$

Yes, for the isomorphism property if $A=\mathfrak{A}$

Proposition

Let $A=\mathfrak{A}$ and let c_1 and c_2 be different constants. Then letrec a:=1 in $(\mathtt{Pair}\ c_1^{[a]}\ c_2^{[a]})$

is **not equivalent w.r.t.** \approx_A to any LRP-expression.

Q2: Is there a change w.r.t. cost-equivalence?

No, if (seq)-reductions do not count for rln:

Theorem

Let $A_0 \subseteq A \subset \mathfrak{A}$, such that $seq \notin A$.

Then LRP and LRPw are isomorphic w.r.t. \approx_A .

Encode letrec a:=n, Env in s as letrec $x_a:=\mathrm{id}^{n+1}, Env[\mathrm{seq}\ x_a\ t/t^{[a]}]$ in $s[\mathrm{seq}\ x_a\ t/t^{[a]}]$

Yes, for the isomorphism property if $A=\mathfrak{A}$

Proposition

Let $A=\mathfrak{A}$ and let c_1 and c_2 be different constants. Then letrec a:=1 in $(\operatorname{Pair}\ c_1^{[a]}\ c_2^{[a]})$

is **not equivalent w.r.t.** \approx_A to any LRP-expression.

Open for conservativity: $s \approx_{\mathfrak{A},LRP} t \implies s \approx_{\mathfrak{A},LRPw} t$?

Equations for Transformations

Theorem

Let $A_0 \subseteq A \subseteq \mathfrak{A}$.

- If $s \xrightarrow{\mathrm{LRPw},a} t$ where $a \in A$ then $s \approx_A t^{[1]}$
- If $s \xrightarrow{C,a} t$ where $a \in A$ then $t \leq_A s$
- If $s \xrightarrow{C,a} t$, a is (III), (cp), (letw0), (cpx), (cpcx), (abs), (abse), (lwas), (ucp), (gc), (gcW), then $s \approx_A t$
- (III) letrec Env_1 in letrec Env_2 in $s \to$ letrec Env_1 , Env_2 in s
- (III) letrec $Env_1, x = (\text{letrec } Env_2 \text{ in } s) \text{ in } t \rightarrow \text{letrec } Env_1, Env_2, x = s \text{ in } t$
- (III) (letrec Env in s) $t \rightarrow$ letrec Env in $(s \ t)$
- (gc) letrec $\{x_i=s_i\}_{i=1}^n, Env \text{ in } t \to \text{letrec } Env \text{ in } t, \text{ if } \forall i: x_i \notin FV(t, Env)$
- (gc) letrec $\{x_i = s_i\}_{i=1}^n$ in $t \to t$, if for all $i: x_i \notin FV(t)$
- (gcW) letrec $\{a_i := n_i\}_{i=1}^m$, Env in $s \to$ letrec Env in s, if all a_i do not occur in Env, s
- (gcW) lettrec $\{a_i := n_i\}_{i=1}^m$ in $s \to s$, if a_1, \ldots, a_m do not occur in s
- (cpx) letrec $x=y, \ldots C[x] \ldots \rightarrow$ letrec $x=y, \ldots C[y] \ldots$ (cpx) letrec $x=(c\,t_1\ldots t_n)\ldots C[x] \ldots \rightarrow$ letrec $x=(c\,y_1\ldots y_n), \{y_i=t_i\}_{i=1}^n\ldots C[c\,y_1\ldots y_n] \ldots$

. . .

Computation Rules

Theorem

Let $A_0 \subseteq A \subseteq \mathfrak{A}$ and S,T be surface contexts

- **1** $(s^{[n]})^{[m]} \approx_A s^{[n+m]}$
- 2 letrec a:=n in $(s^{[a]})^{[a]} \approx_A$ letrec a:=n in $s^{[a]}$

- $\textcircled{\scriptsize 0} \ \texttt{letrec} \ a := n, b := m \ \texttt{in} \ (s^{[a]})^{[b]} \approx_A \texttt{letrec} \ a := n, b := m \ \texttt{in} \ (s^{[b]})^{[a]}$
- $oldsymbol{0}$ letrec a:=n in $S[s_1^{[a]},\ldots,s_n^{[a]}]\preceq_A$ letrec a:=n in $S[s_1,\ldots,s_n]^{[a]}.$
- ① letrec a:=n in $S[s_1^{[a]},\ldots,s_n^{[a]}]\approx_A$ letrec a:=n in $S[s_1,\ldots,s_n]^{[a]}$, if some hole in S is in strict position

Conclusion

- LRPw = Call-by-need calculus with scoped work-decorations
- LRPw not obviously encodable in LRP
- Several improvements and cost-equivalences hold in LRPw
- Expected computation rules hold in LRPw

Further Work

- Apply the results to prove further improvements and cost-equivalences
- Automation of program optimization
- Automation of proving improvement
- Space-improvements