GOETHE @a

UNIVERSITAT

FRANKFURT AM MAIN

A Call-by-Need Lambda Calculus
with Scoped Work Decorations

David Sabel and Manfred Schmidt-Schaul3

Goethe University Frankfurt am Main, Germany

ATPS 2016, Vienna, Austria

Motivation

Reasoning on program transformations, like

map f (map g xs) — map (Az.f (g x)) =s

Are transformations optimizations / improvements?

@ w.r.t. time consumption, i.e. the number of computation steps
@ in a core language of Haskell:

@ extended polymorphically typed lambda calculus
o with call-by-need evaluation

2/18

Some Previous and Related Work o

[Moran & Sands, POPL'99]:
Improvement theory in an untyped call-by-need lambda calculus
@ counting based on an abstract machine semantics
o tick-algebra for modular reasoning on improvements
@ no concrete technique for list induction proofs

[Hackett & Hutton, ICFP'14]:
Improvement for worker-wrapper-transformations
@ based on Moran & Sands’ tick algebra
@ argue for the requirement of a typed language

[Schmidt-SchauB & S., PPDP'15, IFL'15]:
Improvement in call-by-need lambda calculi: untyped LR, typed LRP
@ counting essential reduction steps of a small-step semantics
@ core language with seg-operator
@ proving list-laws being improvements, using work-decorations

3/18

Motivation: Equational Reasoning for List-Expressions &id

Example:
s1 := letrec xs=0:xs in xs
sg = letrec y=((Azx.x) 0),xs=y:y:xs in xs
sg = letrec y=((Az.x) 0),zs=y : (Az.x) y) : xs in xs
sq = letrec xs=Ay.y: (s y) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:
s1 := letrec xs=0:xs in xs
sg = letrec y=((Azx.x) 0),xs=y:y:xs in xs
sg = letrec y=((Az.x) 0),zs=y : (Az.x) y) : xs in xs
sy = letrec zs=M\y.y: (zsy) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:
s1 := letrec xs=0:xs in xs
sg = letrec y=((Azx.x) 0),xs=y:y:xs in xs
sg = letrec y=((Az.x) 0),zs=y : (Az.x) y) : xs in xs
sy = letrec zs=M\y.y: (zsy) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:

$1 ~¢ 0:0:(letrec xs=0:xs in xs)

sg = letrec y=((Azx.x) 0),xs=y:y:xs in xs
sg = letrec y=((Az.x) 0),zs=y : (Az.x) y) : xs in xs
sy = letrec zs=M\y.y: (zsy) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:

S$1 ~c 0:0: (letrec xs=0: xs in xs)

sg = letrec y=((Azx.x) 0),xs=y:y:xs in xs
sg = letrec y=((Az.x) 0),zs=y : (Az.x) y) : xs in xs
sy = letrec zs=M\y.y: (zsy) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:

S$1 ~c 0:0: (letrec xs=0: xs in xs)
0:0: (letrec 2s=0:0: xs in xs)

82 ~c
sg = letrec y=((Az.x) 0),zs=y : ((Az.x) y) : xs in xs
sy = letrec zs=M\y.y: (zsy) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:

S$1 ~c 0:0: (letrec xs=0: xs in xs)

Sg ~c 0:0:(letrec s=0:0: xs in xs)

sg = letrec y=((Az.x) 0),zs=y: (Az.x) y) : xs in xs
sy = letrec zs=M\y.y: (zsy) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:

S$1 ~c 0:0: (letrec xs=0: xs in xs)

Sg ~c 0:0:(letrec s=0:0: xs in xs)
S3 ~¢ 0:0:(letrec zs=0:0:zs in xs)
sy = letrec zs=M\y.y: (zsy) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:
S$1 ~c 0:0: (letrec xs=0: xs in xs)
Sg ~c 0:0:(letrec s=0:0: xs in xs)

S3 ~c 0:0: (letrec zs=0:0: zs in xs)
sy = letrec zs=M\y.y: (zsy) in (xs 0)

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:
S$1 ~c 0:0: (letrec xs=0: xs in xs)
Sg ~c 0:0: (letrec xs=0:0:zs in xs)
S3 ~c 0:0: (letrec xs=0:0:xs in xs)
S4 ~c 0:0: (letrec xs=Ay.y: (zs y) in (xs 0))

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Equational Reasoning for List-Expressions o

Example:
S$1 ~c 0:0: (letrec xs=0: xs in xs)
Sg ~c 0:0: (letrec xs=0:0:zs in xs)
S3 ~c 0:0: (letrec xs=0:0:xs in xs)
Sg ~c 0:0: (letrec xs=Ay.y: (zs y) in (xs 0))

further processing with the tails indeed shows s; ~ s;

Contextual equivalence: s ~ t iff ¥ contexts C': C[s] | <= CJt] | J

Prove s; ~. s; for all 4,5 € {1,2,3,4}

@ For list-expressions r1, 7y define:
1 R T2 iff 1 ~e¢ (h1 : tl), 9 ~e (h2 : t2)
such that hq ~. ho and t1 R o
@ Principle of co-induction: 71 gfp(R) ra = 71 ~¢ T2

4/18

Motivation: Reasoning Including Resources o

In [Schmidt-SchauB & S., IFL 2015]:
@ analogous reasoning,
@ but w.r.t. improvement and cost-equivalence

Improvement and Cost-Equivalence
Improvement:

s 2 tiff s ~. t and V closing contexts C' : r1ln(C|[s]) < r1n(C]t])
where rln(-) is the reduction length, counting essential reduction steps

Cost-Equivalence:
s~tiffs<tandt=<s

5/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 := letrec xs=0:xs in xs

sg = letrec y=((Az.z) 0),zs=y :y:xs in xs

s3 = letrec y=((Az.z) 0),zs=y : (A\z.x) y) : s in xs
sq4 = letrec xs=\y.y: (xs y) in (zs 0)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 := letrec xs=0:xs in xs

sg = letrec y=((Az.z) 0),zs=y :y:xs in xs

s3 = letrec y=((Az.z) 0),zs=y : (A\z.x) y) : s in xs
sq4 = letrec xs=\y.y: (xs y) in (zs 0)

6/18

Motivation: Reasoning including Resources commne f

UNIVERSITAT

Equational reasoning w.r.t. cost equivalence:
s1 ~ 0:0: (letrec zs=0:xs in zs)

sg = letrec y=((Az.z) 0),zs=y :y:xs in xs

s3 = letrec y=((Az.z) 0),zs=y : (A\z.x) y) : s in xs

sy = letrec xs=\y.y: (xs y) in (zs 0)

6/18
U

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 ~ 0:0: (letrec zs=0:xs in zs)

s = letrec y=((Az.z) 0),zs=y :y:xs in xs
s3 = letrec y=((Az.z) 0),zs=y : (A\z.x) y) : s in xs
sy = letrec xs=\y.y: (xs y) in (zs 0)

6/18

GOETHE, 53

Motivation: Reasoning including Resources S

Equational reasoning w.r.t. cost equivalence:

51
52

S3 &
Sq4

~
~

~
~

0:0: (letrec xs=0: xs in xs)

letrec y:Om,xS:y iy :xsinxs

letrec y=((Az.x) 0),xs=y : (Az.z) y) : xs in xs
letrec xs=M\y.y : (xs y) in (zs 0)

Work-decorations to keep track of rln-work:

e [" .= p essential reduction steps

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 &~ 0:0: (letrec £s=0:xs in zs)

sy ~ letrec zs=0le~1l . gla—1]

:xs in s
s3 := letrec y=((Az.z) 0),zs=y : (A\z.x) y) : s in xs
sq4 = letrec xs=\y.y: (s y) in (zs 0)

Work-decorations to keep track of rln-work:
o [:= n essential reduction steps

o =1 :— 1 shared essential reduction steps
(label a marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 &~ 0:0: (letrec £s=0:xs in zs)

sy = ole=1l:ole=1 : (1etrec zs=0[=1 : ol : 25 in xs)
s3 = letrec y=((Az.z) 0),zs=y : (A\z.x) y) : s in xs

sy = letrec xs=\y.y: (s y) in (zs 0)

Work-decorations to keep track of rln-work:
o [:= n essential reduction steps

o =1 :— 1 shared essential reduction steps
(label a marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 &~ 0:0: (letrec £s=0:xs in zs)

so = ole=1l . ole=1l: (1etrec xs=0l>1 : olo=1l . s in xs)
s3 = letrec y=((Az.z) 0),zs=y : (A\z.x) y) : s in xs
sy = letrec xs=\y.y: (s y) in (zs 0)

Work-decorations to keep track of rln-work:
o [:= n essential reduction steps

o =1 :— 1 shared essential reduction steps
(label a marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 ~ 0:0: (letrec s=0:zs in xs)

sy = ole1l:ole=l : (1etrec zs=0[21 : olo=l : g5 in xs)
s3 ~ letrec y=01, zs=y: ((A\z.z) y) : zs in zs

s4 = letrec xs=Ay.y: (s y) in (zs 0)

Work-decorations to keep track of rln-work:
o M := n essential reduction steps

e (@27 .= p shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 ~ 0:0: (letrec s=0:zs in xs)

sy = ole1l:ole=l : (1etrec zs=0[21 : olo=l : g5 in xs)
s3 ~ letrec zs=0l1: ((\z.z) 0l*=21) : zs in xs

s4 = letrec xs=Ay.y: (xs y) in (zs 0)

Work-decorations to keep track of rln-work:
o M := n essential reduction steps

e (@27 .= p shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 ~ 0:0: (letrec s=0:zs in xs)

sy = ole1l:ole=l : (1etrec zs=0[21 : olo=l : g5 in xs)
s3 =~ letrec zs=0[>1: (ole=h[): g5 in zs

sq4 = letrec xs=Ay.y: (xs y) in (zs 0)

Work-decorations to keep track of rln-work:
o M := n essential reduction steps

e (@27 .= p shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 ~ 0:0: (letrec s=0:zs in xs)

sy = ole1l:ole=l : (1etrec zs=0[21 : olo=l : g5 in xs)

s3 = ole=1l: glemlb=1l: (1etrec zs=0l0—1 : glem1b=1] . g5 in 1s)
sq4 = letrec xs=Ay.y: (s y) in (zs 0)

Work-decorations to keep track of rln-work:
o M := n essential reduction steps

e (@27 .= p shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 ~ 0:0: (letrec s=0:zs in xs)

sy = ole1l:ole=l : (1etrec zs=0[21 : olo=l : g5 in xs)

sz~ ole=1l: (ole=lb=1l) : (1etrec xs=0l21 : ola=lb—1] . g i)
s4 = letrec xs=Ay.y: (xs y) in (zs 0)

Work-decorations to keep track of rln-work:
o M := n essential reduction steps

e (@27 .= p shared essential reduction steps
(label @ marks the sharing)

6/18

GOETHE, 53

UNIVERSITAT

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 = 0:0: (letrec s=0: xs in xs)
sy = 0le1]: olo=1l s (1etrec xs=0[e1 : ol : 25 in xs)
ola—11 : (ola=1.b=1ly : (1etrec zs=0[—1 : gla=1b=1l: 45 50 1)

letrec zs=Ay.y : (zs y) in ((Ay.y : (zs y)) 0)

S3 =~

54

Work-decorations to keep track of rln-work:
o M := n essential reduction steps

e (@27 .= p shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 = 0:0: (letrec zs=0: xs in xs)

sy ~ ole—1l: olo1l s (1etrec zs=0[4~1 : ol : g5 in xs)

s3 = ole=1l: (ola—1b=]y - (1etrec zs=00—1 : glem1b=1] . s in 1)
s4 = letrec zs=Ay.y : (zs y) in (0 : (zs 0))1

Work-decorations to keep track of rln-work:
o [:= p essential reduction steps

o (=1 :— 1 shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 = 0:0: (letrec zs=0: xs in xs)

sy ~ ole—1l: olo1l s (1etrec zs=0[4~1 : ol : g5 in xs)

s3 = ole=1l: (ola—1b=]y - (1etrec zs=00—1 : glem1b=1] . s in 1)
s4 ~ letrec zs=\y.y : (zsy) in (0: (Ay.y : (zs y)) 0))1H

Work-decorations to keep track of rln-work:
o [:= p essential reduction steps

o (=1 :— 1 shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 = 0:0: (letrec zs=0: xs in xs)

sy ~ ole—1l: olo1l s (1etrec zs=0[4~1 : ol : g5 in xs)

s3 = ole=1l: (ola—1b=]y - (1etrec zs=00—1 : glem1b=1] . s in 1)
s4 = letrec zs=Ay.y: (zsy) in (0: (0 : (zs 0))1)[]

Work-decorations to keep track of rln-work:
o [:= p essential reduction steps

o (=1 :— 1 shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 = 0:0: (letrec zs=0: xs in xs)

sy ~ ole—1l: olo1l s (1etrec zs=0[4~1 : ol : g5 in xs)

s3 = ole=1l: (ola—1b=]y - (1etrec zs=00—1 : glem1b=1] . s in 1)
sq4 ~ (0:(0:letrec zs=My.y : (zs y) in (zs 0))1)[]

Work-decorations to keep track of rln-work:
o [:= p essential reduction steps

o (=1 :— 1 shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources corme B

UNIVERSITAT

Equational reasoning w.r.t. cost equivalence:

s1 = 0:0: (letrec zs=0: xs in xs)

sy ~ ole—1l: olo1l s (1etrec zs=0[4~1 : ol : g5 in xs)

s3 = ole=1l: (ola—1b=]y - (1etrec zs=00—1 : glem1b=1] . s in 1)
54 ~ (0:(0:letrec zs=My.y : (zs y) in (zs 0))1)[]

further processing shows s1 < s9 < 53 < 84
Work-decorations to keep track of rln-work:

o [:= p essential reduction steps

o [=1 :—) shared essential reduction steps
(label @ marks the sharing)

6/18

Motivation: Reasoning including Resources o

Equational reasoning w.r.t. cost equivalence:

s1 = 0:0: (letrec zs=0: xs in xs)

sy ~ ole—1l: olo1l s (1etrec zs=0[4~1 : ol : g5 in xs)

s3 = ole=1l: (ola—1b=]y - (1etrec zs=00—1 : glem1b=1] . s in 1)
54 ~ (0:(0:letrec zs=My.y : (zs y) in (zs 0))1)[]

further processing shows s1 < s9 < 53 < 84

Work-decorations to keep track of rln-work:
o [:= p essential reduction steps

o [=1 :—) shared essential reduction steps
(label @ marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [*~"]

6/18

Our Contribution ced

o Exact semantics of (shared) work-decorations [*~" (and [")
o Prove computation rules, like S[sl*" tle=nl) < g[s 1]l
e The notation [@2"] is ambiguous, e.g. in

letrec z=\y.s[*?" in C[z] when inlining the binding for x:

Possibilities:
@ letrec a::)\y.s[a’—m] in C[)\y‘s[w—ﬂz}]
@ letrec x:)\y.s[aH”} in C[)\y,s[anl] (where b is fresh)

7/18

Our Contribution ced

o Exact semantics of (shared) work-decorations [*~" (and [")
o Prove computation rules, like S[sl*" tle=nl) < g[s 1]l
e The notation [@2"] is ambiguous, e.g. in

letrec z=\y.s[*?" in C[z] when inlining the binding for x:

Possibilities:
@ letrec a::)\y.s[a’—m] in C[)\y‘s[w—)n}]
@ letrec x:)\y.s[aH”} in C[)\y,s[anl] (where b is fresh)

@ We change the notation to add a scoping for work-decorations:

Instead of [#"] we use a binding a := n and a label [@ J

7/18

Our Contribution ced

Exact semantics of (shared) work-decorations (") (and [)
Prove computation rules, like S[sl@=7, tle=n] < (s, ¢

The notation =7 is ambiguous, e.g. in
letrec z=\y.s[*?" in C[z] when inlining the binding for x:

Possibilities:
@ letrec a::)\y.s[a’—m] in C[)\y‘s[w—ﬂz}]
@ letrec x:)\y.s[aH”} in C[)\y,s[anl] (where b is fresh)

@ We change the notation to add a scoping for work-decorations:

Instead of [#"] we use a binding a := n and a label [@ J

Examples:
o letrec a:=n,z=M\y.s!% in C[z]
o letrec z=My.(letrec a:=n in s/%) in C[z]

7/18

The CaIcqus LRPW 3OETH§

LRPw extends LRP by work decorations

Types:
T € Typ n= Al (= m) | K1 Tak)
p € PTyp n=1 | Ap
Expressions:
u € PExprp = AA;..... AAL x.s
s,t € Exprp w=ul|xupl|(s7)]|(st)] (seqst)
| (letrec bindy,...,bind,, in t)
| (et T 81 v Sar(eg))
| (casex s of (paty1->t1)...(paty |p,|=>tDk|))
| sl9, where a is a label
pat g ; n=(cxi T X T ar(ee;) Tar(CK,i))
bind; = x; pi=$; | @ :=n,where n € N and a is a label

8/18

The Calculus LRPw: Operational Semantics o
LRPw

Normal Order Reduction ——

@ Small-step reduction relation

o Call-by-need strategy using reduction contexts R

@ Several reduction rules, e.g.
(Ibeta) ((Az.s) t) — letrec x =t ins
(cp-in) letrec z1 = (Ay.t),{xi = zi—1}I"y, Env in Clzy,)

— letrec 1 = (Ay.t),{z; = xi—1}]", Env in C[(Ay.t)]

(seq-c) (sequ t) — tif vis a value

(case-c)caser (cty...tn)...((cy1...yn) = 8)...
— letrec {y; =t;}", in s

(letwn) letrec ...a:=mn...C[(sl4)] = letrec ...a:=n—1 ... C[sl]
(letw0) letrec ...a:=0...C[(s!9)] = letrec ...a:=0...C/[s]

9/18

Contextual Equivalence in LRPw commne f

Convergence
A weak head normal form (WHNF) is
@ a value: \z.s, AA.u, or cq.
@ letrec Env in v, where v is a value
@ letrec z1 = c?, {z: = zi—1}5, Env in z,

Convergence:

° sitiffs@—’*—)t/\tisaWHNF

o sliffdt:s |t

Contextual Equivalence
For s,t :: p, s ~ t iff for all contexts C[- :: p|: C[s] <= C[t]{

4

: : : P
Program transformation P is correct iff (s — ¢ = s~ t)

10/18

Improvement in LRPw S

Counting Essential Reductions
For {lbeta,letwn} = Ay C A C A = {lbeta, case, seq, letwn}:

. . . LRP ,
number of A-reductions in ¢ “ot, ¢, iftlt
rlngy(t) :==

00, otherwise

Improvement Relation
For s,t :: p, s improves t (written s <4 t) iff
@ s~.t, and

e for all C[- :: p| s.t. C[s], C[t] are closed: rlny(C|[s]) < rlna(C[t]).

We write s 4t <= s <at At =<4 s (cost-equivalence)

. . . . P
Program transformation P is an improvement iff s -t =— t <4 s

11/18

Do Work-Decorations Change the Semantics? o

LRPw= LRP+ a:=n + [

LRP

Questions:
@ Is there a change w.r.t. contextual equivalence?

@ Is there a change w.r.t. improvement and cost-equivalence?

12/18

Q1: Is there a change w.r.t. contextual equivalence? o

No, since:

Theorem

The embedding of LRP into LRPw w.r.t. ~ is conservative and
the calculi LRP and LRPw are isomorphic: The isomorphism is
[8]~e Lrpw = MW (8)]~, zp Where rmw(-) removes the
decorations.

13/18

Q2: Is there a change w.r.t. cost-equivalence? cormne B

No, if (seq)-reductions do not count for rln:

Theorem

Let Ag C A C ¥, such that seq ¢ A.
Then LRP and LRPw are isomorphic w.r.t. ~4.

Encode letrec a :=n, Env in s as
letrec z, := id"t!, Env[seq 4 t/t1%] in s[seq z, t/tl]

14/18

Q2: Is there a change w.r.t. cost-equivalence? o

No, if (seq)-reductions do not count for rln:

Theorem

Let Ag C A C ¥, such that seq ¢ A.
Then LRP and LRPw are isomorphic w.r.t. ~4.

Encode letrec a :=n, Env in s as
letrec z, := id"t!, Env[seq 4 t/t1%] in s[seq z, t/tl]
Yes, for the isomorphism property if A =2l
Proposition
Let A =% and let ¢; and ¢y be different constants. Then
[a]

letrec a :=1 in (Pair c[la] ey)

is not equivalent w.r.t. ~,4 to any LRP-expression.

14/18

Q2: Is there a change w.r.t. cost-equivalence? o

No, if (seq)-reductions do not count for rln:

Theorem

Let Ag C A C ¥, such that seq ¢ A.
Then LRP and LRPw are isomorphic w.r.t. ~4.

Encode letrec a :=n, Env in s as
letrec z, := id"t!, Env[seq 4 t/t1%] in s[seq z, t/tl]
Yes, for the isomorphism property if A =2l
Proposition
Let A =% and let ¢; and ¢y be different constants. Then
[a]

letrec a :=1 in (Pair c[la] ey)

is not equivalent w.r.t. ~,4 to any LRP-expression.

Open for conservativity: s Xg 1 rp t = S R LRPw t’

14/18

GOETHE, 53

Equations for Transformations

Theorem

Let Ag C A C 2.
LRPw,a (1]
o If s ——> twherea € Athen s~y t
° Ifs—{)twhereaEAthentjAs

o If s 4 t, ais (I, (cp), (letw0), (cpx), (cpcx), (abs), (abse),
(lwas), (ucp), (gc), (gcW), then s ~4 t

() letrec Envi in letrec Envg in s — letrec Envi, Envg in s

() letrec Envi,z=(letrec Fnvs in s) in t — letrec Envi, Enve,x=s in t

() (letrec Env in s) t — letrec Env in (s t)

(gc) letrec {w;=s;};, Env in t — letrec Env int, if Vi: x; ¢ FV (i, Env)

(gc) letrec {w;=s;}, int — ¢, if forall i:a; & FV(¢)

(gcW) letrec {a; :=n;}I",, Env in s — letrec Env in s, if all a; do not occur in Env, s
(gcW) letrec {a; :=n;}I"; in s — s, if ai,...,a, do not occur in s

(cpx) letrec z=y,...C[z]... = letrec z=y,...C[y]...

(cpcx) letrecz=(cty...ty)...Clz]... = letrecz=(cy1...yn), {vi=ti}Iy ... Cleyi.. .yn] ...

15/18

Computation Rules Cynvessiar

Theorem
Let Ag C A C® and S, T be surface contexts
Q (sl x4 sntm]
@ letrec a:=n in (sl4)l9 x4 1letrec a :=n in 59
@ S[letrec a:=n in T[sl”]] <4 letrec a :=n in S[T[s]]!*
Q S[letrec a:=n in T[sl%]] 4 letrec a := n in S[T'[s]]l",
if S[T] is strict.
@ letrec a:=n,b:=m in (s[4t ~, 1etrec a :=n,b:=m in (sl

Q letreca:=nin S[s[la],.. [a]] =<4 letrec a:=mn in S[sy, ..., s,]l%.

@ letreca:=nin S[s[la],.. [a]] ~, letrec a :=n in S[s1, .., 5,1,
if some hole in S is in strict position

16/18

Conclusion oeru £

o LRPw = Call-by-need calculus with scoped work-decorations

o LRPw not obviously encodable in LRP

Several improvements and cost-equivalences hold in LRPw

Expected computation rules hold in LRPw

17/18

Further Work

Apply the results to prove further improvements and
cost-equivalences

@ Automation of program optimization

Automation of proving improvement

@ Space-improvements

18/18

