

1

A Call-by-Need Lambda Calculus
with Scoped Work Decorations

David Sabel and Manfred Schmidt-Schauß

Goethe University Frankfurt am Main, Germany

ATPS 2016, Vienna, Austria

Motivation

Reasoning on program transformations, like

map f (map g xs) → map (λx.f (g x)) xs

Are transformations optimizations / improvements?

w.r.t. time consumption, i.e. the number of computation steps

in a core language of Haskell:

extended polymorphically typed lambda calculus

with call-by-need evaluation

2/18

Some Previous and Related Work

[Moran & Sands, POPL’99]:
Improvement theory in an untyped call-by-need lambda calculus

counting based on an abstract machine semantics
tick-algebra for modular reasoning on improvements
no concrete technique for list induction proofs

[Hackett & Hutton, ICFP’14]:
Improvement for worker-wrapper-transformations

based on Moran & Sands’ tick algebra
argue for the requirement of a typed language

[Schmidt-Schauß & S., PPDP’15, IFL’15]:
Improvement in call-by-need lambda calculi: untyped LR, typed LRP

counting essential reduction steps of a small-step semantics
core language with seq-operator
proving list-laws being improvements, using work-decorations

3/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 := letrec xs=0 : xs in xs
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 := letrec xs=0 : xs in xs
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 := letrec xs=0 : xs in xs
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 ∼c 0 : 0 : (letrec xs=0 : xs in xs)
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 ∼c 0 : 0 : (letrec xs=0 : xs in xs)
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 ∼c 0 : 0 : (letrec xs=0 : xs in xs)
s2 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 ∼c 0 : 0 : (letrec xs=0 : xs in xs)
s2 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 ∼c 0 : 0 : (letrec xs=0 : xs in xs)
s2 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s3 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 ∼c 0 : 0 : (letrec xs=0 : xs in xs)
s2 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s3 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 ∼c 0 : 0 : (letrec xs=0 : xs in xs)
s2 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s3 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s4 ∼c 0 : 0 : (letrec xs=λy.y : (xs y) in (xs 0))

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Equational Reasoning for List-Expressions

Example:

s1 ∼c 0 : 0 : (letrec xs=0 : xs in xs)
s2 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s3 ∼c 0 : 0 : (letrec xs=0 : 0 : xs in xs)
s4 ∼c 0 : 0 : (letrec xs=λy.y : (xs y) in (xs 0))

further processing with the tails indeed shows si ∼c sj

Contextual equivalence: s ∼c t iff ∀ contexts C : C[s] ↓ ⇐⇒ C[t] ↓

Prove si ∼c sj for all i, j ∈ {1, 2, 3, 4}

For list-expressions r1, r2 define:
r1 R r2 iff r1 ∼c (h1 : t1), r2 ∼c (h2 : t2)

such that h1 ∼c h2 and t1 R t2
Principle of co-induction: r1 gfp(R) r2 =⇒ r1 ∼c r2

4/18

Motivation: Reasoning Including Resources

In [Schmidt-Schauß & S., IFL 2015]:

analogous reasoning,

but w.r.t. improvement and cost-equivalence

Improvement and Cost-Equivalence

Improvement:

s � t iff s ∼c t and ∀ closing contexts C : rln(C[s]) ≤ rln(C[t])

where rln(·) is the reduction length, counting essential reduction steps

Cost-Equivalence:

s ≈ t iff s � t and t � s

5/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 := letrec xs=0 : xs in xs
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps

[a7→n] := n shared essential reduction steps
(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 := letrec xs=0 : xs in xs
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps

[a7→n] := n shared essential reduction steps
(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps

[a7→n] := n shared essential reduction steps
(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)
s2 := letrec y=((λx.x) 0), xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps

[a7→n] := n shared essential reduction steps
(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ letrec y=0[1], xs=y : y : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps

[a7→n] := n shared essential reduction steps
(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ letrec xs=0[a7→1] : 0[a7→1] : xs in xs
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)
s3 := letrec y=((λx.x) 0), xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ letrec y=0[1], xs=y : ((λx.x) y) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ letrec xs=0[a7→1] : ((λx.x) 0[a7→1]) : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ letrec xs=0[a7→1] : (0[a7→1])[1] : xs in xs
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : 0[a7→1,b 7→1] : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : (0[a7→1,b 7→1]) : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)
s4 := letrec xs=λy.y : (xs y) in (xs 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : (0[a7→1,b 7→1]) : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)
s4 ≈ letrec xs=λy.y : (xs y) in ((λy.y : (xs y)) 0)

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : (0[a7→1,b 7→1]) : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)

s4 ≈ letrec xs=λy.y : (xs y) in (0 : (xs 0))[1]

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : (0[a7→1,b 7→1]) : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)

s4 ≈ letrec xs=λy.y : (xs y) in (0 : ((λy.y : (xs y)) 0))[1]

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : (0[a7→1,b 7→1]) : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)

s4 ≈ letrec xs=λy.y : (xs y) in (0 : (0 : (xs 0))[1])[1]

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : (0[a7→1,b 7→1]) : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)

s4 ≈ (0 : (0 : letrec xs=λy.y : (xs y) in (xs 0))[1])[1]

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : (0[a7→1,b 7→1]) : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)

s4 ≈ (0 : (0 : letrec xs=λy.y : (xs y) in (xs 0))[1])[1]

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

s1 ≈ 0 : 0 : (letrec xs=0 : xs in xs)

s2 ≈ 0[a7→1] : 0[a7→1] : (letrec xs=0[a7→1] : 0[a7→1] : xs in xs)

s3 ≈ 0[a7→1] : (0[a7→1,b 7→1]) : (letrec xs=0[a7→1] : 0[a7→1,b 7→1] : xs in xs)

s4 ≈ (0 : (0 : letrec xs=λy.y : (xs y) in (xs 0))[1])[1]

further processing shows s1 � s2 � s3 � s4

Work-decorations to keep track of rln-work:
[n] := n essential reduction steps
[a7→n] := n shared essential reduction steps

(label a marks the sharing)

Goal of current paper:
Define and analyze the exact semantics of [a 7→n]

6/18

Our Contribution

Exact semantics of (shared) work-decorations [a7→n] (and [n])

Prove computation rules, like S[s[a7→n], t[a7→n]] � S[s, t][n]

The notation [a7→n] is ambiguous, e.g. in
letrec x=λy.s[a7→n] in C[x] when inlining the binding for x:

Possibilities:
letrec x=λy.s[a7→n] in C[λy.s[a7→n]]
letrec x=λy.s[a7→n] in C[λy.s[b 7→n]] (where b is fresh)

We change the notation to add a scoping for work-decorations:

Instead of [a7→n] we use a binding a := n and a label [a]

Examples:
letrec a := n, x=λy.s[a] in C[x]
letrec x=λy.(letrec a := n in s[a]) in C[x]

7/18

Our Contribution

Exact semantics of (shared) work-decorations [a7→n] (and [n])

Prove computation rules, like S[s[a7→n], t[a7→n]] � S[s, t][n]

The notation [a7→n] is ambiguous, e.g. in
letrec x=λy.s[a7→n] in C[x] when inlining the binding for x:

Possibilities:
letrec x=λy.s[a7→n] in C[λy.s[a7→n]]
letrec x=λy.s[a7→n] in C[λy.s[b 7→n]] (where b is fresh)

We change the notation to add a scoping for work-decorations:

Instead of [a7→n] we use a binding a := n and a label [a]

Examples:
letrec a := n, x=λy.s[a] in C[x]
letrec x=λy.(letrec a := n in s[a]) in C[x]

7/18

Our Contribution

Exact semantics of (shared) work-decorations [a7→n] (and [n])

Prove computation rules, like S[s[a7→n], t[a7→n]] � S[s, t][n]

The notation [a7→n] is ambiguous, e.g. in
letrec x=λy.s[a7→n] in C[x] when inlining the binding for x:

Possibilities:
letrec x=λy.s[a7→n] in C[λy.s[a7→n]]
letrec x=λy.s[a7→n] in C[λy.s[b 7→n]] (where b is fresh)

We change the notation to add a scoping for work-decorations:

Instead of [a7→n] we use a binding a := n and a label [a]

Examples:
letrec a := n, x=λy.s[a] in C[x]
letrec x=λy.(letrec a := n in s[a]) in C[x]

7/18

The Calculus LRPw

LRPw extends LRP by work decorations

Types:

τ ∈ Typ ::= A | (τ1 → τ2) | K τ1 . . . τar(K)

ρ ∈ PTyp ::= τ | λA.ρ

Expressions:

u ∈ PExprF ::= ΛA1.ΛAk.λx.s

s, t ∈ ExprF ::= u | x :: ρ | (s τ) | (s t) | (seq s t)
| (letrec bind1, . . . , bindm in t)
| (cK,i :: τ s1 . . . sar(cK,i))

| (caseK s of (patK,1 -> t1) . . . (patK,|DK | -> t|DK |))

| s[a],where a is a label

patK,i ::= (cK,i :: τ x1 :: τ1 . . . xar(cK,i) :: τar(cK,i))

bind i ::= xi :: ρi=si | a := n,where n ∈ N and a is a label

8/18

The Calculus LRPw: Operational Semantics

Normal Order Reduction
LRPw−−−−→

Small-step reduction relation

Call-by-need strategy using reduction contexts R

Several reduction rules, e.g.

(lbeta) ((λx.s) t)→ letrec x = t in s

(cp-in) letrec x1 = (λy.t), {xi = xi−1}mi=2,Env in C[xm]
→ letrec x1 = (λy.t), {xi = xi−1}mi=2,Env in C[(λy.t)]

(seq-c) (seq v t)→ t if v is a value

(case-c) caseK (c t1 . . . tn) . . . ((c y1 . . . yn)→ s) . . .
→ letrec {yi = ti}ni=1 in s

. . .

(letwn) letrec . . . a := n . . . C[(s[a])]→ letrec . . . a := n−1 . . . C[s[a]]

(letw0) letrec . . . a := 0 . . . C[(s[a])]→ letrec . . . a := 0 . . . C[s]

9/18

Contextual Equivalence in LRPw

Convergence

A weak head normal form (WHNF) is

a value: λx.s, ΛA.u, or c−→s .

letrec Env in v, where v is a value

letrec x1 = c−→s , {xi = xi−1}mi=2,Env in xm

Convergence:

s ↓ t iff s
LRPw,∗−−−−−→ t ∧ t is a WHNF

s ↓ iff ∃t : s ↓ t.

Contextual Equivalence

For s, t :: ρ, s ∼c t iff for all contexts C[· :: ρ]: C[s]↓ ⇐⇒ C[t]↓

Program transformation P is correct iff (s
P−→ t =⇒ s ∼c t)

10/18

Improvement in LRPw

Counting Essential Reductions

For {lbeta, letwn} = A0 ⊆ A ⊆ A = {lbeta, case, seq, letwn}:

rlnA(t) :=


number of A-reductions in t

LRPw,∗−−−−−→ t′, if t ↓ t′

∞, otherwise

Improvement Relation

For s, t :: ρ, s improves t (written s �A t) iff

s ∼c t, and

for all C[· :: ρ] s.t. C[s], C[t] are closed: rlnA(C[s]) ≤ rlnA(C[t]).

We write s ≈A t ⇐⇒ s �A t ∧ t �A s (cost-equivalence)

Program transformation P is an improvement iff s
P−→ t =⇒ t �A s

11/18

Do Work-Decorations Change the Semantics?

LRP

LRPw= LRP+ a := n + [a]

Questions:

Is there a change w.r.t. contextual equivalence?

Is there a change w.r.t. improvement and cost-equivalence?

12/18

Q1: Is there a change w.r.t. contextual equivalence?

No, since:

Theorem

The embedding of LRP into LRPw w.r.t. ∼c is conservative and
the calculi LRP and LRPw are isomorphic: The isomorphism is
[s]∼c,LRPw = [rmw(s)]∼c,LRP where rmw(·) removes the
decorations.

13/18

Q2: Is there a change w.r.t. cost-equivalence?

No, if (seq)-reductions do not count for rln:

Theorem

Let A0 ⊆ A ⊂ A, such that seq 6∈ A.
Then LRP and LRPw are isomorphic w.r.t. ≈A.

Encode letrec a := n,Env in s as
letrec xa := idn+1,Env [seq xa t/t

[a]] in s[seq xa t/t
[a]]

Yes, for the isomorphism property if A = A

Proposition

Let A = A and let c1 and c2 be different constants. Then

letrec a := 1 in (Pair c
[a]
1 c

[a]
2)

is not equivalent w.r.t. ≈A to any LRP-expression.

Open for conservativity: s ≈A,LRP t =⇒ s ≈A,LRPw t?

14/18

Q2: Is there a change w.r.t. cost-equivalence?

No, if (seq)-reductions do not count for rln:

Theorem

Let A0 ⊆ A ⊂ A, such that seq 6∈ A.
Then LRP and LRPw are isomorphic w.r.t. ≈A.

Encode letrec a := n,Env in s as
letrec xa := idn+1,Env [seq xa t/t

[a]] in s[seq xa t/t
[a]]

Yes, for the isomorphism property if A = A

Proposition

Let A = A and let c1 and c2 be different constants. Then

letrec a := 1 in (Pair c
[a]
1 c

[a]
2)

is not equivalent w.r.t. ≈A to any LRP-expression.

Open for conservativity: s ≈A,LRP t =⇒ s ≈A,LRPw t?

14/18

Q2: Is there a change w.r.t. cost-equivalence?

No, if (seq)-reductions do not count for rln:

Theorem

Let A0 ⊆ A ⊂ A, such that seq 6∈ A.
Then LRP and LRPw are isomorphic w.r.t. ≈A.

Encode letrec a := n,Env in s as
letrec xa := idn+1,Env [seq xa t/t

[a]] in s[seq xa t/t
[a]]

Yes, for the isomorphism property if A = A

Proposition

Let A = A and let c1 and c2 be different constants. Then

letrec a := 1 in (Pair c
[a]
1 c

[a]
2)

is not equivalent w.r.t. ≈A to any LRP-expression.

Open for conservativity: s ≈A,LRP t =⇒ s ≈A,LRPw t?

14/18

Equations for Transformations

Theorem

Let A0 ⊆ A ⊆ A.

If s
LRPw,a−−−−−→ t where a ∈ A then s ≈A t

[1]

If s
C,a−−→ t where a ∈ A then t �A s

If s
C,a−−→ t, a is (lll), (cp), (letw0), (cpx), (cpcx), (abs), (abse),

(lwas), (ucp), (gc), (gcW), then s ≈A t

(lll) letrec Env1 in letrec Env2 in s→ letrec Env1,Env2 in s
(lll) letrec Env1, x=(letrec Env2 in s) in t→ letrec Env1,Env2, x=s in t
(lll) (letrec Env in s) t→ letrec Env in (s t)
(gc) letrec {xi=si}ni=1,Env in t→ letrec Env in t, if ∀i : xi 6∈ FV (t,Env)
(gc) letrec {xi=si}ni=1 in t→ t, if for all i : xi 6∈ FV (t)
(gcW) letrec {ai := ni}mi=1,Env in s→ letrec Env in s, if all ai do not occur in Env , s
(gcW) letrec {ai := ni}mi=1 in s→ s, if a1, . . . , am do not occur in s
(cpx) letrec x=y, . . . C[x] . . .→ letrec x=y, . . . C[y] . . .
(cpcx) letrecx=(c t1. . .tn) . . . C[x] . . .→ letrecx=(c y1. . .yn), {yi=ti}ni=1 . . . C[c y1. . .yn] . . .
. . .

15/18

Computation Rules

Theorem

Let A0 ⊆ A ⊆ A and S, T be surface contexts

1 (s[n])[m] ≈A s[n+m]

2 letrec a := n in (s[a])[a] ≈A letrec a := n in s[a]

3 S[letrec a := n in T [s[a]]] �A letrec a := n in S[T [s]][a]

4 S[letrec a := n in T [s[a]]] ≈A letrec a := n in S[T [s]][a],
if S[T] is strict.

5 letrec a := n, b := m in (s[a])[b] ≈A letrec a := n, b := m in (s[b])[a]

6 letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] �A letrec a := n in S[s1, . . . , sn][a].

7 letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] ≈A letrec a := n in S[s1, . . . , sn][a],

if some hole in S is in strict position

16/18

Conclusion

LRPw = Call-by-need calculus with scoped work-decorations

LRPw not obviously encodable in LRP

Several improvements and cost-equivalences hold in LRPw

Expected computation rules hold in LRPw

17/18

Further Work

Apply the results to prove further improvements and
cost-equivalences

Automation of program optimization

Automation of proving improvement

Space-improvements

18/18

