Unification of Program Expressions with Recursive Bindings

Manfred Schmidt-Schauß and David Sabel ${ }^{\dagger}$

Goethe-University Frankfurt am Main, Germany

PPDP 2016, Edinburgh, UK

[^0]Unification as a core procedure for

- automated reasoning on programs and program transformations w.r.t. operational semantics
- for program calculi with higher-order constructs and recursive bindings, e.g.

$$
\text { letrec } x_{1}=s_{1} ; \ldots ; x_{n}=s_{n} \text { in } t
$$

- special focus: extended call-by-need lambda calculi with letrec that model core languages of lazy functional programming languages like Haskell

Application: Correctness of Program Transformations

Program transformation T is correct iff $\forall \ell \rightarrow r \in T: \forall C: C[\ell] \downarrow \Longleftrightarrow C[r] \downarrow$ where $\downarrow=$ successful evaluation w.r.t. standard reduction

Diagram-based proof method to show correctness of transformations:

- Compute overlaps between standard reductions and program transformations (automatable by unification)
- Join the overlaps \Rightarrow forking and commuting diagrams
- Induction using the diagrams (automatable, see [RSSS12, IJCAR])

unifier σ for $\ell_{1} \doteq \ell_{2}$

unifier σ for $\ell_{1} \doteq r_{2}$

Design Decisions for the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

```
A ::=[.]|(A e)
R::=A l letrec Env in A | letrec {\mp@subsup{x}{i}{}=\mp@subsup{A}{i}{}[\mp@subsup{x}{i+1}{}]\mp@subsup{}}{i=1}{n-1},\mp@subsup{x}{n}{}=\mp@subsup{A}{n}{},\mathrm{ Env, in }A[\mp@subsup{x}{1}{}]
```

Standard-reduction rules and some program transformations
(SR,Ibeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,llet) letrec $E n v_{1}$ in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
(T,cpx) $\quad T[$ letrec $x=y, E n v$ in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$
$(\mathrm{T}, \mathrm{gc}) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{Let} \operatorname{Vars}(E n v) \cap F V(e)=\emptyset$

Design Decisions for the Meta－Syntax

Operational semantics of typical call－by－need calculi（excerpt）

Reduction contexts：

```
A ::=[.]|(A e)
R::=A letrec Env in A| letrec {\mp@subsup{x}{i}{}=\mp@subsup{A}{i}{}[\mp@subsup{x}{i+1}{}]\mp@subsup{}}{i=1}{n-1},\mp@subsup{x}{n}{}=\mp@subsup{A}{n}{},\mathrm{ Env, in }A[\mp@subsup{x}{1}{}]
```

Standard－reduction rules and some program transformations
（SR，Ibeta）$R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
（SR，llet）letrec $E n v_{1}$ in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
（T，cpx）$\quad T[$ letrec $x=y$ ，Env in $C[x]] \rightarrow T[$ letrec $x=y$ ，Env in $C[y]]$
$(\mathrm{T}, \mathrm{gc}) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{Let} \operatorname{Vars}(E n v) \cap F V(e)=\emptyset$
Meta－syntax must be capable to represent：
－contexts of different classes
－environments $E n v_{i}$ ，
－environment chains $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}$

Design Decisions for the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
$A::=[\cdot] \mid(A e)$
$R::=A \mid$ letrec Env in $A \mid$ letrec $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}$, Env, in $A\left[x_{1}\right]$
Standard-reduction rules and some program transformations
(SR,Ibeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,llet) letrec Env in letrec Env v_{2} in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
(T,cpx) $\quad T[$ letrec $x=y, E n v$ in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$
(T,gc) $\quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$
Meta-syntax must be capable to represent:

- contexts of different classes
- environments Envi,
- environment chains $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}$

Design Decisions for the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

```
A ::=[.]|(A e)
R::=A letrec Env in A | letrec {\mp@subsup{x}{i}{}=\mp@subsup{A}{i}{}[\mp@subsup{x}{i+1}{}]\mp@subsup{}}{i=1}{n-1},\mp@subsup{x}{n}{}=\mp@subsup{A}{n}{},\mathrm{ Env, in }A[\mp@subsup{x}{1}{}]
```

Standard-reduction rules and some program transformations
(SR,Ibeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,llet) letrec $E n v_{1}$ in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}$, Env 2 in e
(T,cpx) $\quad T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$
$(\mathrm{T}, \mathrm{gc}) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{Let} \operatorname{Vars}(E n v) \cap F V(e)=\emptyset$
Meta-syntax must be capable to represent:

- contexts of different classes
- environments $E n v_{i}$,
- environment chains $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}$

Design Decisions for the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

```
A ::=[.]|(A e)
R::=A l letrec Env in A | letrec {\mp@subsup{x}{i}{}=\mp@subsup{A}{i}{}[\mp@subsup{x}{i+1}{}]\mp@subsup{}}{i=1}{n-1},\mp@subsup{x}{n}{}=\mp@subsup{A}{n}{},\mathrm{ Env, in }A[\mp@subsup{x}{1}{}]
```

Standard-reduction rules and some program transformations
(SR,Ibeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,llet) letrec $E n v_{1}$ in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
(T,cpx) $\quad T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$
$(\mathrm{T}, \mathrm{gc}) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{Let} \operatorname{Vars}(E n v) \cap F V(e)=\emptyset$
Meta-syntax must be capable to represent:

- contexts of different classes
- environments $E n v_{i}$,
- environment chains $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}$

Syntax of the Meta-Language LRSX

Variables	$x \in$ Var $\begin{aligned} &: \\ & \\ & \mid= \\ &\end{aligned}$	(variable meta-variable) (concrete variable)
Expressions	$s \in \text { Expr }::=S$	(expression meta-variable) (context meta-variable) (letrec-expression) (variable) (function application) or x_{i} specified by f
	$o \in \mathbf{H E x p r}^{n}::=x_{1} \ldots . x_{n} . s$	(higher-order expression)
Environments env \in Env $::=\emptyset$		(empty environment) (environment meta-variable) (chain meta-variable) (binding)
	$E ;$ env	
	$C h[x, s] ; e n v$	
	x.s; env	

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$
A::=[\cdot] \mid(A e)
$$

$$
R::=A \mid \text { letrec } E n v \text { in } A \mid \text { letrec }\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}, \text { Env, in } A\left[x_{1}\right]
$$

Standard-reduction rules and some program transformations (SR,Ibeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$ (SR,Ilet) letrec Env in letrec Env v_{2} in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e (T,cpx) $\quad T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$ (T,gc) $\quad T$ [letrec Env in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$

Unification-problems have to treat (implicit) restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables,
- (llet): $F V\left(E n v_{1}\right) \cap \operatorname{LetVars}\left(E n v_{2}\right)=\emptyset$
- (cpx): x, y are not captured by C in $C[x]$

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$
A::=[\cdot] \mid(A e)
$$

$$
R::=A \mid \text { letrec Env in } A \mid \text { letrec }\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}, \text { Env, in } A\left[x_{1}\right]
$$

Standard-reduction rules and some program transformations
(SR,Ibeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,Ilet) letrec Env in letrec Env v_{2} in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e (T,cpx) $\quad T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$ ($\mathrm{T}, \mathrm{gc}) \quad T[$ letrec Env in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$

Unification-problems have to treat (implicit) restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables,
- (llet): $F V\left(E n v_{1}\right) \cap \operatorname{LetVars}\left(E n v_{2}\right)=\emptyset$
- (cpx): x, y are not captured by C in $C[x]$

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$
A::=[\cdot] \mid(A e)
$$

$$
R::=A \mid \text { letrec } E n v \text { in } A \mid \text { letrec }\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}, \text { Env, in } A\left[x_{1}\right]
$$

Standard-reduction rules and some program transformations (SR,Ibeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$ (SR,Ilet) letrec Env in letrec Env in $_{1}$ in \rightarrow letrec $E n v_{1}, E n v_{2}$ in e (T,cpx) $\quad T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$ (T,gc) $\quad T$ [letrec Env in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$

Unification-problems have to treat (implicit) restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables,
- (llet): $F V\left(E n v_{1}\right) \cap \operatorname{LetVars}\left(E n v_{2}\right)=\emptyset$
- (cpx): x, y are not captured by C in $C[x]$

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$
A::=[\cdot] \mid(A e)
$$

$$
R::=A \mid \text { letrec } E n v \text { in } A \mid \text { letrec }\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}, \text { Env, in } A\left[x_{1}\right]
$$

Standard-reduction rules and some program transformations (SR,Ibeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$ (SR,Ilet) letrec Env in letrec Env v_{2} in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e (T,cpx) $\quad T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$ (T,gc) $\quad T$ [letrec Env in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$

Unification-problems have to treat (implicit) restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables,
- (llet): $F V\left(E n v_{1}\right) \cap \operatorname{LetVars}\left(E n v_{2}\right)=\emptyset$
- (cpx): x, y are not captured by C in $C[x]$

A letrec unification problem is a tuple $P=\left(\Gamma, \Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ with

- Γ : unification equations $s \doteq s^{\prime}$
- Δ_{1} : non-empty contexts (set of D-variables)
- Δ_{2} : non-empty environments (set of E-variables)
- Δ_{3} : non-capture constraints (set of (expression,context)-pairs)

Occurrence restrictions:

- Each S-variable occurs at most twice in Γ
- Each E-, $C h$-, D-variable occurs at most once in Γ
- $C h$-variables are only allowed in one letrec-environment in Γ

Unifier and Solution of $P=\left(\Gamma, \Delta_{1}, \Delta_{2}, \Delta_{3}\right)$
A substitution ρ is a unifier of P iff

- $\rho(s) \sim_{l e t} \rho\left(s^{\prime}\right)$ for all $s \doteq s^{\prime} \in \Gamma$
- $\rho(D) \neq[\cdot]$ for all $D \in \Delta_{1}$ and $\rho(E) \neq \emptyset$ for all $E \in \Delta_{2}$
- $\operatorname{Var}(\rho(s)) \cap C V(\rho(d))=\emptyset$ for all $(s, d) \in \Delta_{3}$

A unifier ρ is a solution of P if ρ is a ground substitution.
$\sim_{l e t}=$ syntactic equality upto permuting bindings in environments
$C V(d)=$ variables that are captured by the hole of context d

Solutions and Unifiers

Unifier and Solution of $P=\left(\Gamma, \Delta_{1}, \Delta_{2}, \Delta_{3}\right)$

A substitution ρ is a unifier of P iff

- $\rho(s) \sim_{\text {let }} \rho\left(s^{\prime}\right)$ for all $s \doteq s^{\prime} \in \Gamma$
- $\rho(D) \neq[\cdot]$ for all $D \in \Delta_{1}$ and $\rho(E) \neq \emptyset$ for all $E \in \Delta_{2}$
- $\operatorname{Var}(\rho(s)) \cap C V(\rho(d))=\emptyset$ for all $(s, d) \in \Delta_{3}$

A unifier ρ is a solution of P if ρ is a ground substitution.
$\sim_{l e t}=$ syntactic equality upto permuting bindings in environments
$C V(d)=$ variables that are captured by the hole of context d

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification problem exists is NP-hard.

Proof by a reduction from Monotone one-In-Three-3-SAT.

Unification Algorithm UnifLRS

Intermediate data structure of the algorithm: $(S o l, \Gamma, \Delta)$ where

- Sol is a computed substitution
- Γ is a set of equations
- $\Delta=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}\right)$
- $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ are constraints as in a letrec unification problem
- Δ_{4} are environment equations $E_{1} ; \ldots ; E_{n}=C h[x, s]$

Input:

For $P=\left(\Gamma, \Delta_{1}, \Delta_{2}, \Delta_{3}\right)$, UnifLRS starts with $\left(I d, \Gamma,\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \emptyset\right)\right)$
Output (on each branch):
Fail or final state $(S o l, \emptyset, \Delta)$

Inference rules of the form $\frac{P}{P_{1}|\ldots| P_{n}}$
Four kinds of rules:

- First-order rules
- Rules for environment equations
- Rules for equations $D[s] \doteq s^{\prime}$
- Failure rules

Rule application is non-deterministic:

- don't care non-determinsm between the rules
- don't know non-determinism between $P_{1}|\ldots| P_{n}$

$$
\frac{(S o l, \Gamma \cup\{\mathrm{x} \doteq \mathrm{x}\}, \Delta)}{(S o l, \Gamma, \Delta)}
$$

$\frac{(S o l, \Gamma \cup\{S \doteq s\}, \Delta)}{(S o l \circ\{S \mapsto s\}, \Gamma[s / S], \Delta[s / S])}$ if S is not a proper sub-expression of s
$\left(S o l, \Gamma \cup\left\{\right.\right.$ letrec $e n v_{1}$ in $s_{1} \doteq$ letrec env ${ }_{2}$ in $\left.\left.s_{2}\right\}, \Delta\right)$

$$
\left(S o l, \Gamma \cup\left\{e n v_{1} \doteq e n v_{2}, s_{1} \doteq s_{2}\right\}, \Delta\right)
$$

Unifying bindings and chains:

$$
\left(S o l, \Gamma \cup\left\{x . t ; e n v_{1} \doteq C h[y, s] ; e n v_{2}\right\}, \Delta\right)
$$

$$
\begin{aligned}
& \left(S o l \circ \sigma, \Gamma \cup\left\{x . t \doteq y . D[s], e n v_{1} \doteq e n v_{2}\right\}, \Delta \sigma\right) \\
& \sigma=\{C h[y, s] \mapsto y \cdot D[s]\} \\
& \text { "equal" } \\
& \mid\left(S o l \circ \sigma, \Gamma \cup\left\{x . t \doteq y \cdot D[\operatorname{var} Y], e n v_{1} \doteq C h_{2}[Y, s] ; e n v_{2}\right\}, \Delta \sigma\right) \\
& \sigma=\left\{C h_{1}[y, s] \mapsto y . D[\operatorname{var} Y] ; C h_{2}[Y, s]\right\} \\
& \mid\left(S o l \circ \sigma, \Gamma \cup\left\{x . t \doteq Y_{1} \cdot D\left[\operatorname{var} Y_{2}\right], e n v_{1} \doteq C h_{1}\left[y, \operatorname{var} Y_{1}\right] ; C h_{2}\left[Y_{2}, s\right] ; e n v_{2}\right\}, \Delta \sigma\right) \\
& \sigma=\left\{C h[y, s] \mapsto C h_{1}\left[y,\left(\operatorname{var} Y_{1}\right)\right] ; Y_{1} \cdot D\left[\operatorname{var} Y_{2}\right] ; C h_{2}\left[Y_{2}, s\right]\right\} \quad \text { "infix" } \\
& \mid \quad\left(S o l \circ \sigma, \Gamma \cup\left\{x . t \doteq Y_{1} \cdot D[s], e n v_{1} \doteq C h_{2}\left[y, \operatorname{var} Y_{1}\right] ; e n v_{2}, \Delta \sigma\right\}\right) \\
& \sigma=\left\{C h_{1}[y, s] \mapsto C h_{2}\left[y, \operatorname{var} Y_{1}\right] ; Y_{1} . D[s]\right\}
\end{aligned}
$$

Keep chain-equations as constraints

$$
\frac{\left(S o l, \Gamma \cup\left\{E_{1} ; \ldots ; E_{n} \doteq C h[y, s]\right\},\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}\right)\right)}{\left(S o l, \Gamma,\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4} \cup\left\{E_{1} ; \ldots ; E_{n} \doteq C h[y, s]\right\}\right)\right)}
$$

Selection of Failure Rules

Standard cases:

$$
\begin{aligned}
& \frac{\left(S o l, \Gamma \cup\left\{\left(\mathrm{x}_{1} \doteq \mathrm{x}_{2}\right)\right\}, \Delta\right)}{\text { Fail }} \\
& \frac{(S o l, \Gamma \cup\{(S \doteq s)\}, \Delta)}{\text { Fail }}
\end{aligned}
$$

Checking non-capture contraints:

$$
\frac{\left(S o l, \Gamma,\left(\Delta_{1}, \Delta_{2}, \Delta_{3} \cup\{(s, d)\}, \Delta_{4}\right)\right)}{\text { Fail }} \text { if } \operatorname{Var}(s) \cap C V(d) \neq \emptyset
$$

For a final state (Sol, \emptyset, Δ) satisfiabilty of Δ_{4} is checked:
Guess an instantiation σ for all $E_{1} ; \ldots ; E_{n} \doteq C h[y, s] \in \Delta_{4}$ s.t.

- $\sigma(C h[y, s])=y \cdot D_{1}\left[Y_{1}\right] ; Y_{1} \cdot D_{2}\left[Y_{2}\right] ; \ldots ; Y_{k} \cdot D_{k+1}[s]$
- $\sigma\left(E_{i}\right) \subseteq\left\{y \cdot D_{1}\left[Y_{1}\right] ; Y_{1} . D_{2}\left[Y_{2}\right] ; \ldots ; Y_{k} \cdot D_{k+1}[s]\right\}$ and $\sigma\left(E_{i}\right) \neq \emptyset$ if $E_{i} \in \Delta_{2}$
- $\sigma\left(E_{1} ; \ldots ; E_{n}\right) \sim_{l e t} \sigma(C h[y, s])$
- all non-capture constraints in $\Delta_{3} \sigma$ are valid

Deliver Fail if no such instantiation exists.

Satisfiability Check of Constraint Equations

For a final state $(S o l, \emptyset, \Delta)$ satisfiabilty of Δ_{4} is checked:
Guess an instantiation σ for all $E_{1} ; \ldots ; E_{n} \doteq C h[y, s] \in \Delta_{4}$ s.t.

- $\sigma(C h[y, s])=y \cdot D_{1}\left[Y_{1}\right] ; Y_{1} \cdot D_{2}\left[Y_{2}\right] ; \ldots ; Y_{k} \cdot D_{k+1}[s]$
- $\sigma\left(E_{i}\right) \subseteq\left\{y \cdot D_{1}\left[Y_{1}\right] ; Y_{1} . D_{2}\left[Y_{2}\right] ; \ldots ; Y_{k} \cdot D_{k+1}[s]\right\}$ and $\sigma\left(E_{i}\right) \neq \emptyset$ if $E_{i} \in \Delta_{2}$
- $\sigma\left(E_{1} ; \ldots ; E_{n}\right) \sim_{l e t} \sigma(C h[y, s])$
- all non-capture constraints in $\Delta_{3} \sigma$ are valid

Deliver Fail if no such instantiation exists.

Key Lemma

It suffices to test only those k with $k+1 \leq M_{1}{ }^{2} *\left(M_{2}+1\right)+M_{2}$ where $M_{1}=\left|\Delta_{2} \cap\left\{E_{1} ; \ldots ; E_{n}\right\}\right|$ and $M_{2}=n-M_{1}$.
Thus, the Δ_{4}-check can be done in nondeterministic polynomial time.

Soundness and Completeness

Proposition (Soundness)

For input P and successful output (Sol, \emptyset, Δ):

- All ground instances of $S o l$ that do not violate Δ are solutions of P.
- There exists at least one ground instance of $S o l$ which solves P.

Proposition (Completeness)

For any solution ρ of a letrec unification problem P there exists a final state $(S o l, \emptyset, \Delta)$ of UnifLRS s.t. ρ is an instance of Sol.

Theorem

UnifLRS is sound and complete.

Complexity of UnifLRS

frankfurt am mail

Theorem

UnifLRS terminates in nondeterministic polynomial time and solutions are of polynomial size.

Corollary
The letrec unification problem is NP-complete.

Computing Overlaps with UnifLRS

Implementation available from http://goethe.link/Irsx

- unification of expressions
- calculus descriptions as input for computing overlaps

Experiments with two call-by-need calculi:

- $L_{\text {need }}$: lambda calculus plus letrec
- LR: $L_{\text {need }}+$ data constructors + case expressions + seq-expressions
- overlaps for 11 transformations w.r.t. all standard reduction rules

Statistics:

number of standard rules	$\begin{gathered} \text { Calculus } L_{\text {need }} \\ 13 \end{gathered}$		Cald	$\begin{aligned} & \text { ulus LR } \\ & 76 \end{aligned}$
	forking	commuting	forking	commuting
number of critical pairs	1741	2156	34319	37016
execution time (sec.)	2	3	44	56

- Sound and complete unification algorithm for program calculi with recursive bindings
- Letrec unification problem is NP-complete
- Automated computation of overlaps for call-by-need core languages is possible
- Sound and complete unification algorithm for program calculi with recursive bindings
- Letrec unification problem is NP-complete
- Automated computation of overlaps for call-by-need core languages is possible

Further work:

- Join the critical pairs: Requires matching-algorithm, but also handling of the ($\left.\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}\right)$-constraints, and probably some kind of meta alpha-renaming
- Equivalence of different reductions strategies: computing overlaps requires to unify chain-variables $\left(C h_{1}[y, s] \doteq C h_{2}\left[y^{\prime}, s^{\prime}\right]\right)$

[^0]: ${ }^{\dagger}$ Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.

