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Motivation

Unification as a core procedure for

automated reasoning on programs and program
transformations w.r.t. operational semantics

for program calculi with higher-order constructs and recursive
bindings, e.g.

letrec x1 = s1; . . . ;xn = sn in t

special focus: extended call-by-need lambda calculi with letrec
that model core languages of lazy functional programming
languages like Haskell
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Application: Correctness of Program Transformations

Program transformation T is correct iff ∀`→r ∈ T : ∀C: C[`]↓ ⇐⇒ C[r]↓
where ↓= successful evaluation w.r.t. standard reduction

Diagram-based proof method to show correctness of transformations:

Compute overlaps between standard reductions and
program transformations (automatable by unification)

Join the overlaps ⇒ forking and commuting diagrams

Induction using the diagrams (automatable, see [RSSS12, IJCAR])
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Design Decisions for the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1i=1 , xn=An,Env , inA[x1]

Standard-reduction rules and some program transformations

(SR,lbeta) R[(λx.e1) e2]→ R[letrec x = e2 in e1]
(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e
(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]
(T,gc) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Meta-syntax must be capable to represent:

contexts of different classes

environments Env i,

environment chains {xi=Ai[xi+1]}n−1i=1
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Syntax of the Meta-Language LRSX

Variables x ∈ Var ::= X (variable meta-variable)

| x (concrete variable)

Expressions s ∈ Expr ::= S (expression meta-variable)

| D[s] (context meta-variable)

| letrec env in s (letrec-expression)

| var x (variable)

| (f r1 . . . rar(f)) (function application)

where ri is oi, si, or xi specified by f

o ∈ HExprn::= x1. . . . xn.s (higher-order expression)

Environments env ∈ Env ::= ∅ (empty environment)

| E; env (environment meta-variable)

| Ch[x, s]; env (chain meta-variable)

| x.s; env (binding)
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Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1i=1 , xn=An,Env , inA[x1]

Standard-reduction rules and some program transformations

(SR,lbeta) R[(λx.e1) e2]→ R[letrec x = e2 in e1]
(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e
(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]
(T,gc) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Unification-problems have to treat (implicit) restrictions on scoping and
emptiness, e.g.:

(gc): Env must not be empty; side condition on variables,

(llet): FV (Env1) ∩ LetVars(Env2) = ∅
(cpx): x, y are not captured by C in C[x]
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Letrec Unification Problem

A letrec unification problem is a tuple P = (Γ,∆1,∆2,∆3) with

Γ: unification equations s
.
= s′

∆1: non-empty contexts (set of D-variables)

∆2: non-empty environments (set of E-variables)

∆3: non-capture constraints (set of (expression,context)-pairs)

Occurrence restrictions:

Each S-variable occurs at most twice in Γ

Each E-, Ch-, D-variable occurs at most once in Γ

Ch-variables are only allowed in one letrec-environment in Γ
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Solutions and Unifiers

Unifier and Solution of P = (Γ,∆1,∆2,∆3)

A substitution ρ is a unifier of P iff

ρ(s) ∼let ρ(s′) for all s
.
= s′ ∈ Γ

ρ(D) 6= [·] for all D ∈ ∆1 and ρ(E) 6= ∅ for all E ∈ ∆2

Var(ρ(s)) ∩ CV (ρ(d)) = ∅ for all (s, d) ∈ ∆3

A unifier ρ is a solution of P if ρ is a ground substitution.

∼let = syntactic equality upto permuting bindings in environments

CV (d) = variables that are captured by the hole of context d

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification
problem exists is NP-hard.

Proof by a reduction from Monotone one-in-three-3-SAT.
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Unification Algorithm UnifLRS

Intermediate data structure of the algorithm: (Sol ,Γ,∆) where

Sol is a computed substitution

Γ is a set of equations

∆ = (∆1,∆2,∆3,∆4)

(∆1,∆2,∆3) are constraints as in a letrec unification problem

∆4 are environment equations E1; . . . ;En = Ch[x, s]

Input:
For P = (Γ,∆1,∆2,∆3), UnifLRS starts with (Id,Γ, (∆1,∆2,∆3, ∅))

Output (on each branch):
Fail or final state (Sol , ∅,∆)
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Unification Algorithm UnifLRS: Rules

Inference rules of the form
P

P1 | . . . | Pn

Four kinds of rules:

First-order rules

Rules for environment equations

Rules for equations D[s]
.
= s′

Failure rules

Rule application is non-deterministic:

don’t care non-determinsm between the rules

don’t know non-determinism between P1 | . . . | Pn
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Selection of Rules (1)

(Sol ,Γ ·∪{x .
= x},∆)

(Sol ,Γ,∆)

(Sol ,Γ ·∪{S .
= s},∆)

(Sol ◦ {S 7→ s},Γ[s/S],∆[s/S])

if S is not a proper
sub-expression of s

(Sol ,Γ ·∪{letrec env1 in s1
.
= letrec env2 in s2},∆)

(Sol ,Γ ·∪{env1
.
= env2, s1

.
= s2},∆)
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Selection of Rules (2)

Unifying bindings and chains:

(Sol ,Γ ·∪{x.t; env1
.
= Ch[y, s]; env2},∆)

(Sol ◦ σ,Γ ·∪{x.t .= y.D[s], env1
.
= env2},∆σ)

σ = {Ch[y, s] 7→ y.D[s]} “equal”

| (Sol ◦ σ,Γ ·∪{x.t .= y.D[var Y ], env1
.
= Ch2[Y, s]; env2},∆σ)

σ = {Ch1[y, s] 7→ y.D[var Y ];Ch2[Y, s]} “prefix”

| (Sol ◦ σ,Γ ·∪{x.t .= Y1.D[var Y2], env1
.
= Ch1[y, var Y1];Ch2[Y2, s]; env2},∆σ)

σ = {Ch[y, s] 7→ Ch1[y, (var Y1)];Y1.D[var Y2];Ch2[Y2, s]} “infix”

| (Sol ◦ σ,Γ ·∪{x.t .= Y1.D[s], env1
.
= Ch2[y, var Y1]; env2,∆σ})

σ = {Ch1[y, s] 7→ Ch2[y, var Y1];Y1.D[s]} “suffix”
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Selection of Rules (3)

Keep chain-equations as constraints

(Sol ,Γ ·∪ {E1; . . . ;En
.
= Ch[y, s]}, (∆1,∆2,∆3,∆4))

(Sol ,Γ, (∆1,∆2,∆3,∆4 ∪ {E1; . . . ;En
.
= Ch[y, s]}))
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Selection of Failure Rules

Standard cases:

(Sol ,Γ ·∪{(x1
.
= x2)},∆)

Fail

(Sol ,Γ ·∪{(S .
= s)},∆)

Fail
if S is a proper subterm of s

Checking non-capture contraints:

(Sol ,Γ, (∆1,∆2,∆3 ∪ {(s, d)},∆4))

Fail
if Var(s) ∩ CV (d) 6= ∅
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Satisfiability Check of Constraint Equations

For a final state (Sol , ∅,∆) satisfiabilty of ∆4 is checked:
Guess an instantiation σ for all E1; . . . ;En

.
= Ch[y, s] ∈ ∆4 s.t.

σ(Ch[y, s]) = y.D1[Y1];Y1.D2[Y2]; . . . ;Yk.Dk+1[s]

σ(Ei) ⊆ {y.D1[Y1]; Y1.D2[Y2]; . . . ; Yk.Dk+1[s]} and
σ(Ei) 6= ∅ if Ei ∈ ∆2

σ(E1; . . . ;En) ∼let σ(Ch[y, s])

all non-capture constraints in ∆3σ are valid

Deliver Fail if no such instantiation exists.

Key Lemma

It suffices to test only those k with k + 1 ≤M1
2 ∗ (M2 + 1) +M2

where M1 = |∆2 ∩ {E1; . . . ;En}| and M2 = n−M1.
Thus, the ∆4-check can be done in nondeterministic polynomial
time.
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Soundness and Completeness

Proposition (Soundness)

For input P and successful output (Sol , ∅,∆):

All ground instances of Sol that do not violate ∆ are solutions of P .

There exists at least one ground instance of Sol which solves P .

Proposition (Completeness)

For any solution ρ of a letrec unification problem P there exists a final
state (Sol , ∅,∆) of UnifLRS s.t. ρ is an instance of Sol .

Theorem

UnifLRS is sound and complete.
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Complexity of UnifLRS

Theorem

UnifLRS terminates in nondeterministic polynomial time and
solutions are of polynomial size.

Corollary

The letrec unification problem is NP-complete.
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Computing Overlaps with UnifLRS

Implementation available from http://goethe.link/lrsx

unification of expressions

calculus descriptions as input for computing overlaps

Experiments with two call-by-need calculi:

Lneed : lambda calculus plus letrec

LR: Lneed + data constructors + case expressions + seq-expressions

overlaps for 11 transformations w.r.t. all standard reduction rules

Statistics:
Calculus Lneed Calculus LR

number of standard rules 13 76
forking commuting forking commuting

number of critical pairs 1741 2156 34319 37016

execution time (sec.) 2 3 44 56
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Conclusion

Sound and complete unification algorithm for program calculi
with recursive bindings

Letrec unification problem is NP-complete

Automated computation of overlaps for call-by-need core
languages is possible

Further work:

Join the critical pairs: Requires matching-algorithm, but also
handling of the (∆1,∆2,∆3,∆4)-constraints, and probably
some kind of meta alpha-renaming

Equivalence of different reductions strategies: computing
overlaps requires to unify chain-variables
(Ch1[y, s]

.
= Ch2[y

′, s′])
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