GOETHE @a

UNIVERSITAT

FRANKFURT AM MAIN

Unification of Program Expressions
with Recursive Bindings

Manfred Schmidt-SchauBB3 and David Sabel:

Goethe-University Frankfurt am Main, Germany

PPDP 2016, Edinburgh, UK

T Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1

Motivation o f

Unification as a core procedure for

@ automated reasoning on programs and program
transformations w.r.t. operational semantics

@ for program calculi with higher-order constructs and recursive
bindings, e.g.

letrec 1 = 81;...;Zp = Sp in

@ special focus: extended call-by-need lambda calculi with letrec
that model core languages of lazy functional programming
languages like Haskell

2/19

Application: Correctness of Program Transformations i

Program transformation T is correct iff V/—r € T: VC: C[{]] < C|r]|{
where |= successful evaluation w.r.t. standard reduction

Diagram-based proof method to show correctness of transformations:

o Compute overlaps between standard reductions and
program transformations (automatable by unification)

@ Join the overlaps = forking and commuting diagrams
@ Induction using the diagrams (automatable, see [RSSS12, 1JCAR])

program program
transformation transformation
o(l)=o(ly) —— o(r2) o(l)=o(r2) «———o(l2)
| |
standard ‘* standard ‘*
reduction | reduction |
N N
olri) ---------—-—---- > - olry) ¢e------=------- .
(r1) B (r1) ;
unifier o for {1 = {9 unifier o for {1 = ry

Design Decisions for the Meta-Syntax o

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
Ai=[]| (Ae)
R:= A | letrec Envin A | letrec {z;=A;[r;11]}7}, 2n=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Ax.e1) e2] — R[letrec z = ez in eq]
(SR/llet) letrec Env; in letrec Fnvs in e — letrec Envi, Envg in e
(T,epx) Tletrec x =y, Env in C[z]] — T[letrec = =y, Env in Cly|]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

4/19

Design Decisions for the Meta-Syntax o

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
Ai=[]| (Ae)
R:= A | letrec Envin A | letrec {z;=A;[r;11]}7}, 2n=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Ax.e1) e2] — R[letrec z = ez in eq]
(SR/llet) letrec Env; in letrec Fnvs in e — letrec Envi, Envg in e
(T,epx) Tletrec x =y, Env in C[z]] — T[letrec = =y, Env in Cly|]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes

@ environments Env;,

n—1

@ environment chains {z;=A;[x;11]};

4/19

Design Decisions for the Meta-Syntax o

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A=]| (Ae)
R:= A | letrec Envin A | letrec {z;=A;[r;11]}7}, 2n=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Ax.e1) e2] — R[letrec z = ez in ey]
(SR/llet) letrec Env; in letrec Fnvs in e — letrec Envi, Envg in e
(T,epx) Tletrec x =y, Env in C[z]] — T[letrec = =y, Env in Cy|]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes

@ environments Env;,

n—1

@ environment chains {z;=A;[x;11]};

4/19

Design Decisions for the Meta-Syntax o

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
As=[]] (Ae)
R:= A | letrec Envin A | letrec {z;=A;[r;11]}1}, zn=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Ax.e1) e2] — R[letrec z = ez in eq]
(SRllet) letrec Env; in letrec Envs in e — letrec Envi, Envg in e
(T,epx) Tletrec o =y, Env in C[z]] — T[letrec = =y, Env in Cly]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes

@ environments Env;,

n—1

@ environment chains {z;=A;[x;11]};

4/19

Design Decisions for the Meta-Syntax o

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
Ai=[]| (Ae)
R:= A | letrec EnvinA | letrec {z;=A;[z;11]}/}, zn=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Ax.e1) e2] — R[letrec z = ez in eq]
(SR/llet) letrec Env; in letrec Fnvs in e — letrec Envi, Envg in e
(T,epx) Tletrec x =y, Env in C[z]] — T[letrec = =y, Env in Cly|]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes

@ environments Env;,

n—1

@ environment chains {z;=A;[x;41]};"

4/19

Syntax of the Meta-Language LRSX

GOETHE, 53

UNIVERSITAT

Variables x € Var ::
Expressions s € Expr :
o € HExpr"::

Environments env € Env ::

(variable meta-variable)
(concrete variable)

(expression meta-variable)
(context meta-variable)
(letrec-expression)
(variable)

(function application)

where r; is 0;, s;, or x; specified by f

=X

X
=5

Dls]

letrecenvins

var x

(frl -Tar f))
=T1|....Tp.S
=0

E; env

Ch[z, s]; env

T.S; env

(higher-order expression)

(empty environment)
(environment meta-variable)
(chain meta-variable)
(binding)

5/19

Binding and Scoping Constraints o

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A=[]| (Ae)
R:= A | letrec Envin A | letrec {z;=A;[z;11]}'"}, 2n=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Az.e1) e2] — R[letrec x = e in €]
(SR,llet) letrec Envy in letrec Fnuvs in e — letrec Envy, Envg in e
(T,epx) T[letrec x =y, Env in C[z]] — T[letrec x =y, Env in Cly]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

v

Unification-problems have to treat (implicit) restrictions on scoping and
emptiness, e.g.:

@ (gc): Env must not be empty; side condition on variables,

o (llet): FV(Envy) N LetVars(Envy) = ()

@ (cpx): x,y are not captured by C in C[x]

6/19

Binding and Scoping Constraints o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
A=[]| (Ae)
R:= A | letrec Envin A | letrec {z;=A;[z;11]}'"}, 2n=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Az.e1) e2] — R[letrec x = e in €]
(SR,llet) letrec Envy in letrec Fnuvs in e — letrec Envy, Envg in e
(T,epx) T[letrec x =y, Env in C[z]] — T[letrec x =y, Env in Cly]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

v

Unification-problems have to treat (implicit) restrictions on scoping and
emptiness, e.g.:

@ (gc): Env must not be empty; side condition on variables,

o (llet): FV(Envy) N LetVars(Envy) = ()

@ (cpx): x,y are not captured by C in C[x]

6/19

Binding and Scoping Constraints o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
Asi=[1](Ae)
R:= A | letrec Envin A | letrec {z;=A;[z;11]}'"}, 2n=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Az.e1) e2] — R[letrec x = e in €]
(SR,llet) letrec Envy in letrec Fnuvs in e — letrec Envy, Envg in e
(T,epx) T[letrec x =y, Env in C[z]] — T[letrec x =y, Env in Cly]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

v

Unification-problems have to treat (implicit) restrictions on scoping and
emptiness, e.g.:

@ (gc): Env must not be empty; side condition on variables,

o (llet): FV(Envy) N LetVars(Envy) = 0

@ (cpx): x,y are not captured by C in C[x]

6/19

Binding and Scoping Constraints o

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A=[]| (Ae)
R:= A | letrec Envin A | letrec {z;=A;[z;11]}'"}, 2n=Ay, Env, in A[z1]
Standard-reduction rules and some program transformations
(SR,Ibeta) R[(Az.e1) e2] — R[letrec x = e in €]
(SR,llet) letrec Envy in letrec Fnuvs in e — letrec Envy, Envg in e
(T,epx) T[letrec x =y, Env in C[z]] — T[letrec x =y, Env in Cly]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

v

Unification-problems have to treat (implicit) restrictions on scoping and
emptiness, e.g.:

@ (gc): Env must not be empty; side condition on variables,

o (llet): FV(Envy) N LetVars(Envy) = ()

@ (cpx): x,y are not captured by C' in C[x]

6/19

Letrec Unification Problem

A letrec unification problem is a tuple P = (F, A1, Ao, Ag) with
e I': unification equations s = s’
e Aj: non-empty contexts (set of D-variables)
e As: non-empty environments (set of E-variables)

e Aj3: non-capture constraints (set of (expression,context)-pairs)

Occurrence restrictions:
@ Each S-variable occurs at most twice in I'
@ Each E-, Ch-, D-variable occurs at most once in T’

@ Ch-variables are only allowed in one letrec-environment in I’

7/19

Solutions and Unifiers J‘

Unifier and Solution of P = (T', A1, Ay, A3)

A substitution p is a unifier of P iff
@ p(8) ~iet p(s’) forall s=4 €Tl
@ p(D) #[] forall D€ Ay and p(E) # 0 for all E € Ay
e Var(p(s)) N CV(p(d)) =0 for all (s,d) € As

A unifier p is a solution of P if p is a ground substitution.

v

~et = syntactic equality upto permuting bindings in environments

CV (d) = variables that are captured by the hole of context d

8/19

Solutions and Unifiers J

Unifier and Solution of P = (T', A1, Ay, A3)

A substitution p is a unifier of P iff
@ p(8) ~er p(8) forall s=s" €T
@ p(D) #[] forall D€ Ay and p(E) # 0 for all E € Ay
e Var(p(s)) N CV(p(d)) =0 for all (s,d) € As

A unifier p is a solution of P if p is a ground substitution.

v

~et = syntactic equality upto permuting bindings in environments

CV (d) = variables that are captured by the hole of context d

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification
problem exists is NP-hard.

Proof by a reduction from MONOTONE ONE-IN-THREE-3-SAT.

8/19

Unification Algorithm UnifLRS o

Intermediate data structure of the algorithm: (Sol,T", A) where

@ Sol is a computed substitution

o I is a set of equations
o A - (Ala A27 A37 A4)
e (A1,Ay, Ag) are constraints as in a letrec unification problem
e Ay are environment equations E1;...; E, = Ch|zx, s]
Input:

For P = (T, A1, Ay, Ag), UnifLRS starts with (Id, T, (A1, Ay, As, 1))

Output (on each branch):
Fail or final state (Sol, 0, A)

9/19

Unification Algorithm UnifLRS: Rules

P

Inference rules of the form —M—
P |...|P,

Four kinds of rules:

First-order rules
Rules for environment equations

Rules for equations D[s] = '

Failure rules

Rule application is non-deterministic:
@ don't care non-determinsm between the rules

@ don't know non-determinism between P; | ... | P,

10/19

Selection of Rules (1) T

(Sol, TU{x = x}, A)
(Sol, T, A)

(Sol, FU{S = 8}7 A) if S is not a proper
(Sol o {S + s},T'[s/S], Als/S]) sub-expression of s

(Sol,TU{letrec env; in s; = letrec envy in so}, A)
(Sol,TU{envy = envy, s1 = sa}, A)

11/19

Selection of Rules (2) ol

Unifying bindings and chains:

(Sol,TU{x.t; envy = Chly, s|; enva}, A)

(Sol o o,TU{z.t = y.D[s], envi = enva}, Ao)
o ={Chly,s| — y.D[s]} “equal”

| (Soloo,TW{z.t =y.Dlvar Y], envy = ChalY, s]; enva}, Ac)
o ={Chily, s] = y.D[var Y]; Cho[Y, s|} “prefix”

’ (Sol o 0, TWU{x.t =Y1.D[var Ys], env; = Chqly, var Y1]; Cha[Y2, s]; enva}, Ac)
o ={Chly, s| = Chily, (var Y1)]; Y1.D]var Y3]; Cho[Yo, s]} “infix”

| (Soloo,TW{z.t =Y,.D[s], envy = Chaly, var Vi]; enva, Ac})
o = {Chily, s] — Chsly,var Y1];Y1.D[s]} “suffix”

12/19

Selection of Rules (3) ol

Keep chain-equations as constraints

(SOlv rv {El; s ;En = Ch[.U» S]}? (Ala A2> A37 A4))
(SOZ7F7 (Ala AQ, A3a A4 U {Eh S E’IL = Ch[,% 8]}))

13/19

Selection of Failure Rules o

Standard cases:

(Sol, TU{(x1 = x2)}, A)
Fail

(Sol, TU{(S =s)},A)
Fail

if S is a proper subterm of s

Checking non-capture contraints:

(SOZ,F, (Alv A2a A3 U {(Sa d)}7 A4))
Fail

if Var(s)Nn CV(d) #0

14/19

Satisfiability Check of Constraint Equations o

For a final state (Sol, (), A) satisfiabilty of Ay is checked:
Guess an instantiation o for all £y;...; E, = Chly, s] € A4 s.t.

o o(Chly,s]) = y.Di[Y1]; Y1.Do[Ya]; ... Yi- Dy [s]

o o(L;) C{y.Di[V1]; Y1.D2[Y2]; .. .5 Yi.Diy1[s]} and
o(E;) #0if E; € Ay

o o(Eq;...;Ey) ~iet 0(Chly, s))

@ all non-capture constraints in Azo are valid

Deliver Fail if no such instantiation exists.

15/19

Satisfiability Check of Constraint Equations o

For a final state (Sol, (), A) satisfiabilty of Ay is checked:
Guess an instantiation o for all £y;...; E, = Chly, s] € A4 s.t.
o o(Chly,s]) = y.Di[Y1]; Y1.Do[Ya]; ... Yi- Dy [s]
o O'(EZ) g {y.Dl[Yl]; Yi.DQ[YQ]; RN Yk-Dk—l—l[S]} and
o o(Eq;...;Ey) ~iet 0(Chly, s))
@ all non-capture constraints in Azo are valid

Deliver Fail if no such instantiation exists.

Key Lemma

It suffices to test only those k with k +1 < M2 % (Ms + 1) + My
where M7 = ‘AQ N {El; - ;En}| and My =n — Mj.

Thus, the A4-check can be done in nondeterministic polynomial
time.

15/19

Soundness and Completeness cormne B3

Proposition (Soundness)
For input P and successful output (Sol, (), A):
@ All ground instances of Sol that do not violate A are solutions of P.

@ There exists at least one ground instance of Sol which solves P.

Proposition (Completeness)

For any solution p of a letrec unification problem P there exists a final
state (Sol, (), A) of UnifLRS s.t. p is an instance of Sol.

Theorem
UnifLRS is sound and complete.

16/19

Complexity of UnifLRS cormne B

Theorem

UnifLRS terminates in nondeterministic polynomial time and
solutions are of polynomial size.

Corollary

The letrec unification problem is NP-complete.

17/19

Computing Overlaps with UnifLRS

GOETHE, 53

UNIVERSITAT

Implementation available from http://goethe.link/Irsx

@ unification of expressions

@ calculus descriptions as input for computing overlaps

Experiments with two call-by-need calculi:

@ L,eeq: lambda calculus plus letrec

@ LR: Ljceq + data constructors + case expressions + seg-expressions

@ overlaps for 11 transformations w.r.t. all standard reduction rules

Statistics:

number of standard rules

Calculus L,eeq

13

forking | commuting

Calculus LR

76

forking | commuting

number of critical pairs

1741

2156

34319

37016

execution time (sec.)

2

3

44

56

18/19

U

Conclusion

@ Sound and complete unification algorithm for program calculi
with recursive bindings

@ Letrec unification problem is NP-complete

@ Automated computation of overlaps for call-by-need core
languages is possible

19/19

Con C| usion 3OETHES

@ Sound and complete unification algorithm for program calculi
with recursive bindings

@ Letrec unification problem is NP-complete

@ Automated computation of overlaps for call-by-need core
languages is possible

Further work:

@ Join the critical pairs: Requires matching-algorithm, but also
handling of the (A1, Ay, Az, Ay)-constraints, and probably
some kind of meta alpha-renaming

@ Equivalence of different reductions strategies: computing
overlaps requires to unify chain-variables

(Chl[ya S] = Ch’2[y,a Sl])

19/19

