Correctness of Program Transformations: Automating Diagram-Based Proofs

David Sabel ${ }^{\dagger}$
Goethe-University Frankfurt am Main, Germany

${ }^{\dagger}$ Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.

- reasoning on program transformations w.r.t. operational semantics
- for program calculi with higher-order constructs and recursive bindings, e.g. letrec-expressions:

$$
\text { letrec } x_{1}=s_{1} ; \ldots ; x_{n}=s_{n} \text { in } t
$$

- extended call-by-need lambda calculi with letrec that model core languages of lazy functional programming languages like Haskell

Motivation

A program transformation is a binary relation on program fragments

A program transformation is a binary relation on program fragments

Some applications:

- Compilers: Optimizations (inlining, partial evaluation,...)
- Code Refactoring: Transformations to improve readability and maintainability
- Theorem Provers: Transforming programs in proofs

Correctness

Program transformation T is correct iff $T \subseteq \sim_{c}$

- Contextual equivalence: $e \sim_{c} e^{\prime}$ iff $e \leq_{c} e^{\prime}$ and $e \geq_{c} e^{\prime}$
- Contextual preorder: $e \leq_{c} e^{\prime}$ iff $\forall C: C[e] \downarrow \Longrightarrow C\left[e^{\prime}\right] \downarrow$
- \downarrow means successful evaluation:
$e \downarrow:=e \xrightarrow{s r, *} e^{\prime}$ and e^{\prime} is a successful result
- where $\xrightarrow{s r}$ is the small-step operational semantics (standard reduction)
- and $\xrightarrow{s r, *}$ is the reflexive-transitive closure of $\xrightarrow{s r}$

Convergence Preservation

- Convergence preservation: $e \leq \downarrow e^{\prime}$ iff $e \downarrow \Longrightarrow e^{\prime} \downarrow$
- We only consider transformations T such that $T \subseteq \leq_{\downarrow} \Longrightarrow T \subseteq \leq_{c}$
- No restriction, since the contextual closure of T fulfills this property.
- A context lemma allows for smaller closures (reduction contexts)
- $T \subseteq \geq_{c}$ can be proved by showing $T^{-1} \subseteq \leq_{c}$

Required task:

Idea of the Diagram Method

- Base case: For all successful e
program
transformation

successful

Idea of the Diagram Method

- Base case: For all successful e
program
transformation

successful
I
४ standard
: reduction
steps
\downarrow
$e^{\prime \prime}$
successful

Idea of the Diagram Method

- Base case: For all successful e

- General case: For all programs e
program
transformation

standard reduction

Idea of the Diagram Method

- Base case: For all successful e
program
transformation

successful
- General case: For all programs e

Idea of the Diagram Method

- Base case: For all successful e
program
transformation

successful

- General case: For all programs e

- Inductive construction

Idea of the Diagram Method

- Base case: For all successful e

- General case: For all programs e

- Inductive construction

Idea of the Diagram Method

- Base case: For all successful e
program
transformation

successful

- General case: For all programs e

- Inductive construction

Idea of the Diagram Method

- Base case: For all successful e
program
transformation

successful

- General case: For all programs e

- Inductive construction

Focused Languages and Previous Results

The diagram technique was, for instance, used for

- call-by-need lambda calculi with letrec, data constructors, case, and seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]
- process calculi with call-by-value [NSSSS07, MFPS] or call-by-need evaluation [SSS11, PPDP] and [SSS12, LICS]
- reasoning on whether program transformations are improvements w.r.t. the run-time [SSS15, PPDP] and [SSS17, SCP]

Focused Languages and Previous Results

The diagram technique was, for instance, used for

- call-by-need lambda calculi with letrec, data constructors, case, and seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]
- process calculi with call-by-value [NSSSS07, MFPS] or call-by-need evaluation [SSS11, PPDP] and [SSS12, LICS]
- reasoning on whether program transformations are improvements w.r.t. the run-time [SSS15, PPDP] and [SSS17, SCP]

Conclusions from these works

- The diagram method works well
- The method requires to compute overlaps (error-prone, tedious,...)
- Automation of the method would be valuable

Automation of the Diagram-Method

Structure of the LRSX-Tool

Representation of the Input

Structure of the LRSX-Tool

Requirements on the Meta-Syntax

The syntax of extended call-by-need lambda-calculi typically includes:

- lambda-calculus: variables x, abstractions $\lambda x . e$, applications ($e e^{\prime}$)
- data-constructors True, False, Nil, Cons $e_{1} e_{2}, \ldots$
- data-selectors / case-expressions
- let- and recursive let expressions: letrec $x_{1}=e_{1}, \ldots, x_{n}=e_{n}$ in e

Requirements on the Meta-Syntax

The syntax of extended call-by-need lambda-calculi typically includes:

- lambda-calculus: variables x, abstractions $\lambda x . e$, applications ($e e^{\prime}$)
- data-constructors True, False, Nil, Cons $e_{1} e_{2}, \ldots$
- data-selectors / case-expressions
- let- and recursive let expressions: letrec $x_{1}=e_{1}, \ldots, x_{n}=e_{n}$ in e

Language LRS parametric over \mathcal{F}
Expressions $\quad s \in$ Expr $::=\operatorname{var} \times \mid$ letrec $e n v$ in $s \mid\left(f r_{1} \ldots r_{\operatorname{ar}(f)}\right)$ where r_{i} is o_{i}, s_{i}, or x_{i} specified by $f \in \mathcal{F}$
H.O.-Expressions $o \in \mathbf{H E x p r}^{n}::=\mathrm{x}_{1} \ldots \mathrm{x}_{n} . s$

Environments $\quad e n v \in \operatorname{Env}::=\emptyset \mid x=s ; e n v$

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$
\begin{aligned}
& A::=[\cdot] \mid(A \text { e }) \\
& R::=A \mid \text { letrec Env in } A \mid \text { letrec }\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}, \text { Env, in } A\left[x_{1}\right]
\end{aligned}
$$

Standard-reduction rules and some program transformations:
(SR,lbeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,Ilet) letrec Env v_{1} in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
(T, cpx) $\quad T[$ 1etrec $x=y$, Env in $C[x]] \rightarrow T[$ 1etrec $x=y$, Env in $C[y]]$
(T,gc,1) $\quad T$ [letrec Env, Env ${ }^{\prime}$ in $\left.e\right] \rightarrow T\left[\right.$ letrec Env ${ }^{\prime}$ in $\left.e\right]$,
if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
$A::=[\cdot] \left\lvert\,\left(\begin{array}{ll}A & e\end{array}\right)\right.$
$R::=A \mid$ letrec Env in $A \mid$ letrec $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}$, Env, in $A\left[x_{1}\right]$
Standard-reduction rules and some program transformations:
(SR,lbeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,Ilet) letrec Env v_{1} in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
(T, cpx) $\quad T[$ 1etrec $x=y, E n v$ in $C[x]] \rightarrow T[$ 1etrec $x=y$, Env in $C[y]]$
(T,gc,1) $\quad T$ [letrec Env, Env ${ }^{\prime}$ in $\left.e\right] \rightarrow T\left[\right.$ letrec Env ${ }^{\prime}$ in $\left.e\right]$,
if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{Let} \operatorname{Vars}(E n v) \cap F V(e)=\emptyset$
Meta-syntax must be capable to represent:

- contexts of different classes
- environments $E n v_{i}$ and environment chains $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}$

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
$A::=[\cdot] \left\lvert\,\left(\begin{array}{ll}A & e\end{array}\right)\right.$
$R::=A \mid$ letrec Env in $A \mid$ letrec $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}$, Env, in $A\left[x_{1}\right]$
Standard-reduction rules and some program transformations:
(SR,lbeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,Ilet) letrec Env v_{1} in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
(T, cpx) $\quad T[$ 1etrec $x=y, E n v$ in $C[x]] \rightarrow T[$ 1etrec $x=y$, Env in $C[y]]$
(T,gc,1) $\quad T$ [letrec Env, Env ${ }^{\prime}$ in $\left.e\right] \rightarrow T[$ letrec Env' in $e]$,
if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{Let} \operatorname{Vars}(E n v) \cap F V(e)=\emptyset$
Meta-syntax must be capable to represent:

- contexts of different classes
- environments $E n v_{i}$ and environment chains $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}$

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
$A::=[\cdot] \left\lvert\,\left(\begin{array}{ll}A & e\end{array}\right)\right.$
$R::=A \mid$ letrec Env in $A \mid$ letrec $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}$, Env, in $A\left[x_{1}\right]$
Standard-reduction rules and some program transformations:
(SR,lbeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,Ilet) letrec Env v_{1} in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
(T, cpx) $\quad T[$ letrec $x=y, E n v$ in $C[x]] \rightarrow T[$ 1etrec $x=y, E n v$ in $C[y]]$
(T,gc,1) $\quad T$ [letrec Env, Env ${ }^{\prime}$ in $\left.e\right] \rightarrow T[$ letrec Env' in $e]$,
if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$
Meta-syntax must be capable to represent:

- contexts of different classes
- environments $E n v_{i}$ and environment chains $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}$

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
$A::=[\cdot] \left\lvert\,\left(\begin{array}{ll}A & e\end{array}\right)\right.$
$R::=A \mid$ letrec Env in $A \mid$ letrec $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}, x_{n}=A_{n}$, Env, in $A\left[x_{1}\right]$
Standard-reduction rules and some program transformations:
(SR,lbeta) $R\left[\left(\lambda x . e_{1}\right) e_{2}\right] \rightarrow R\left[\right.$ letrec $x=e_{2}$ in $\left.e_{1}\right]$
(SR,Ilet) letrec Env v_{1} in letrec $E n v_{2}$ in $e \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in e
(T, cpx) $\quad T[$ letrec $x=y, E n v$ in $C[x]] \rightarrow T[$ 1etrec $x=y, E n v$ in $C[y]]$
(T,gc,1) $\quad T$ [letrec Env, Env ${ }^{\prime}$ in $\left.e\right] \rightarrow T[$ letrec Env' in $e]$,
if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) \quad T[$ letrec $E n v$ in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$
Meta-syntax must be capable to represent:

- contexts of different classes
- environments $E n v_{i}$ and environment chains $\left\{x_{i}=A_{i}\left[x_{i+1}\right]\right\}_{i=1}^{n-1}$

Syntax of the Meta-Language LRSX

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

(T,cpx) $T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ hetrec $x=y$, Env in $C[y]]$
(T,gc,1) $T\left[\right.$ letrec $E n v, E n v^{\prime}$ in $\left.e\right] \rightarrow T\left[\right.$ letrec $E n v^{\prime}$ in $\left.e\right]$, if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) T[$ letrec Env in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$
Restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables
- (cpx): x, y are not captured by C in $C[x], C[y]$

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

(T,cpx) $T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ hetrec $x=y$, Env in $C[y]]$
(T,gc,1) $T\left[\right.$ letrec $E n v, E n v^{\prime}$ in $\left.e\right] \rightarrow T\left[\right.$ letrec $E n v^{\prime}$ in $\left.e\right]$, if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) T[$ letrec Env in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$
Restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables
- (cpx): x, y are not captured by C in $C[x], C[y]$

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

(T,cpx) $T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ letrec $x=y$, Env in $C[y]]$
$(\mathrm{T}, \mathrm{gc}, 1) T\left[\right.$ 1etrec $E n v, E n v^{\prime}$ in $\left.e\right] \rightarrow T\left[\right.$ 1etrec $E n v^{\prime}$ in $\left.e\right]$, if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) T[$ letrec Env in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$
Restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables
- (cpx): x, y are not captured by C in $C[x], C[y]$

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

(T,cpx) $T[$ letrec $x=y$, Env in $C[x]] \rightarrow T[$ hetrec $x=y$, Env in $C[y]]$
(T,gc,1) $T\left[\right.$ letrec $E n v, E n v^{\prime}$ in $\left.e\right] \rightarrow T\left[\right.$ letrec $E n v^{\prime}$ in $\left.e\right]$, if $\operatorname{LetVars}(E n v) \cap F V\left(e, E n v^{\prime}\right)=\emptyset$
$(\mathrm{T}, \mathrm{gc}, 2) T[$ letrec Env in $e] \rightarrow T[e] \quad$ if $\operatorname{LetVars}(E n v) \cap F V(e)=\emptyset$
Restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables
- (cpx): x, y are not captured by C in $C[x], C[y]$

Constraints

A constraint tuple $\Delta=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ consists of

- non-empty context constraints Δ_{1} : set of context variables
- non-empty environment constraints Δ_{2} : set of environment variables
- non-capture constraints (NCCs) Δ_{3} : set of pairs (s, d)
(s an expression, d a context)
Ground substitution ρ satisfies $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ iff
- $\rho(D) \neq[\cdot]$ for all $D \in \Delta_{1}$
- $\rho(E) \neq \emptyset$ for all $E \in \Delta_{2}$
- hole of $\rho(d)$ does not capture variables of $\rho(s)$, for all $(s, d) \in \Delta_{3}$

Constraints

A constraint tuple $\Delta=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ consists of

- non-empty context constraints Δ_{1} : set of context variables
- non-empty environment constraints Δ_{2} : set of environment variables
- non-capture constraints (NCCs) Δ_{3} : set of pairs (s, d)
(s an expression, d a context)
Ground substitution ρ satisfies $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ iff
- $\rho(D) \neq[\cdot]$ for all $D \in \Delta_{1}$
- $\rho(E) \neq \emptyset$ for all $E \in \Delta_{2}$
- hole of $\rho(d)$ does not capture variables of $\rho(s)$, for all $(s, d) \in \Delta_{3}$

Example:
$s=$ letrec E_{1} in letrec E_{2} in S
$\Delta=\left(\emptyset,\left\{E_{1}, E_{2}\right\},\left\{\left(\right.\right.\right.$ letrec E_{2} in S, letrec E_{1} in $\left.\left.\left.\left.[\cdot]\right)\right\}\right)\right)$
$\operatorname{semantics}(s, \Delta)=$ nested letrec-expressions with unused outer environment

Representation of Rules

Standard reductions and transformations are represented as

$$
\ell \rightarrow_{\Delta} r
$$

where ℓ, r are LRSX-expressions and Δ is a constraint-tuple
Example:

$$
(\mathrm{T}, \mathrm{gc}, 2) T[\text { letrec Env in } e] \rightarrow T[e] \text { if } \operatorname{Let} \operatorname{Vars}(E n v) \cap F V(e)=\emptyset
$$

is represented as

$$
D[\text { letrec } E \text { in } S] \rightarrow_{(\emptyset,\{E\},\{(S, \text { letrec } E \text { in }[\cdot])\})} D[S]
$$

Computing Overlaps

Structure of the LRSX-Tool

Computing Overlaps by Unification

- As usual, we assume that the meta-variables in $\ell_{A} \rightarrow_{\Delta_{A}} r_{A}$ are pairwise disjoint from meta-variables in $\ell_{B} \rightarrow_{\Delta_{B}} r_{B}$ are pairwise disjoint (use fresh copies of the rules)
- Unification also has to treat / respect the constraints $\Delta:=\Delta_{A} \cup \Delta_{B}$

A letrec unification problem is a tuple $P=(\Gamma, \Delta)$ with

- Γ : unification equations $s \doteq s^{\prime}$ of LRSX-expressions
- $\Delta=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ is a constraint tuple.

Occurrence restrictions:

- Each S-variable occurs at most twice in Γ
- Each E-, $C h$-, D-variable occurs at most once in Γ
- $C h$-variables are only allowed in one letrec-environment in Γ

Solutions and Unifiers

Unifier and Solution of $P=(\Gamma, \Delta)$

A substitution ρ is a unifier of P iff

- $\rho(s) \sim_{\text {let }} \rho\left(s^{\prime}\right)$ for all $s \doteq s^{\prime} \in \Gamma$
- ρ can be instantiated to satisfy Δ

A unifier ρ is a solution of P if ρ is a ground substitution.
$\sim_{l e t}=$ syntactic equality upto permuting bindings in environments

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification problem exists is NP-hard.

Proof by a reduction from Monotone one-in-Three-3-SAT.
Sketch: For each clause $C_{i}=\left\{S_{i, 1}, S_{i, 2}, S_{i, 3}\right\}$, add the unification equation

$$
\begin{aligned}
\quad \text { letrec } Y_{i, 1} & =S_{i, 1} ; Y_{i, 2}=S_{i, 2} ; \quad Y_{i, 3}=S_{i, 3} \text { in } c \\
\doteq & \text { letrec } \mathrm{y}_{i, 1}=\text { false } ; \mathrm{y}_{i, 2}=\text { false } ; \mathrm{y}_{i, 3}=\text { true } \text { in } c
\end{aligned}
$$

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification problem exists is NP-hard.

Proof by a reduction from Monotone one-in-Three-3-SAT.
Sketch: For each clause $C_{i}=\left\{S_{i, 1}, S_{i, 2}, S_{i, 3}\right\}$, add the unification equation

$$
\begin{aligned}
\quad \text { letrec } Y_{i, 1} & =S_{i, 1} ; Y_{i, 2}=S_{i, 2} ; \quad Y_{i, 3}=S_{i, 3} \text { in } c \\
\doteq & \text { letrec } \mathrm{y}_{i, 1}=\text { false } ; \mathrm{y}_{i, 2}=\text { false } ; \mathrm{y}_{i, 3}=\text { true } \text { in } c
\end{aligned}
$$

Remark: Equations have no meta-variables on the right hand side \leftrightarrow Matching is already NP-hard.

Unification Algorithm UnifLRS [SSS16, PPDP]

Intermediate data structure of the algorithm: $(S o l, \Gamma, \Delta)$ where

- Sol is a computed substitution
- Γ is a set of equations
- $\Delta=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}\right)$
- $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ are constraints as in a letrec unification problem
- Δ_{4} are environment equations $E_{1} ; \ldots ; E_{n}=C h[x, s]$

Input:

For $P=\left(\Gamma, \Delta_{1}, \Delta_{2}, \Delta_{3}\right)$, UnifLRS starts with $\left(I d, \Gamma,\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \emptyset\right)\right)$
Output (on each branch):
Fail or final state $(S o l, \emptyset, \Delta)$

$$
\frac{(S o l, \Gamma \uplus\{x \doteq x\}, \Delta)}{(S o l, \Gamma, \Delta)}
$$

$\frac{(S o l, \Gamma \cup\{S \doteq s\}, \Delta)}{(S o l \circ\{S \mapsto s\}, \Gamma[s / S], \Delta[s / S])}$ if S is not a proper
$\left(S o l, \Gamma \cup\left\{\right.\right.$ letrec $e n v_{1}$ in $s_{1} \doteq$ letrec $e n v_{2}$ in $\left.\left.s_{2}\right\}, \Delta\right)$

$$
\left(S o l, \Gamma \cup\left\{e n v_{1} \doteq e n v_{2}, s_{1} \doteq s_{2}\right\}, \Delta\right)
$$

Selection of Rules (2)

Unifying bindings and chains:

$$
\left(S o l, \Gamma \cup\left\{x=t ; e n v_{1} \doteq C h[y, s] ; e n v_{2}\right\}, \Delta\right)
$$

$$
\begin{array}{rlrl}
& \left(S o l \circ \sigma, \Gamma \cup\left\{x=t \doteq y=D[s], e n v_{1} \doteq e n v_{2}\right\}, \Delta \sigma\right) & \\
& \sigma=\{C h[y, s] & \mapsto y=D[s]\} & \text { "equal" } \\
& \left(S o l \circ \sigma, \Gamma \cup\left\{x=t \doteq y=D[\operatorname{var} Y], e n v_{1} \doteq C h_{2}[Y, s] ; e n v_{2}\right\}, \Delta \sigma\right) & \\
\sigma=\left\{C h_{1}[y, s]\right. & \left.\mapsto y=D[\operatorname{var} Y] ; C h_{2}[Y, s]\right\} & \text { "prefix" } \\
& \left(S o l \circ \sigma, \Gamma \cup\left\{x=t \doteq Y_{1}=D\left[\operatorname{var} Y_{2}\right], e n v_{1} \doteq C h_{1}\left[y, \operatorname{var} Y_{1}\right] ; C h_{2}\left[Y_{2}, s\right] ; e n v_{2}\right\}, \Delta \sigma\right) \\
\sigma=\{C h[y, s] & \left.\mapsto C h_{1}\left[y,\left(\operatorname{var} Y_{1}\right)\right] ; Y_{1}=D\left[\operatorname{var} Y_{2}\right] ; C h_{2}\left[Y_{2}, s\right]\right\} & \text { "infix" } \\
& \left(S o l \circ \sigma, \Gamma \cup\left\{x=t \doteq Y_{1}=D[s], e n v_{1} \doteq C h_{2}\left[y, \operatorname{var} Y_{1}\right] ; e n v_{2}, \Delta \sigma\right\}\right) & \\
\sigma=\left\{C h_{1}[y, s]\right. & \left.\mapsto C h_{2}\left[y, \operatorname{var} Y_{1}\right] ; Y_{1}=D[s]\right\} & \text { "suffix" }
\end{array}
$$

Selection of Failure Rules

Standard cases:

$$
\begin{aligned}
& \frac{\left(S o l, \Gamma \cup\left\{\left(\mathrm{x}_{1} \doteq \mathrm{x}_{2}\right)\right\}, \Delta\right)}{\text { Fail }} \\
& \frac{(S o l, \Gamma \cup\{(S \doteq s)\}, \Delta)}{\text { Fail }}
\end{aligned}
$$

Checking non-capture contraints:

$$
\frac{\left(S o l, \Gamma,\left(\Delta_{1}, \Delta_{2}, \Delta_{3} \cup\{(s, d)\}, \Delta_{4}\right)\right)}{\text { Fail }} \text { if } \operatorname{Var}_{M}(s) \cap C V_{M}(d) \neq \emptyset
$$

Var_{M} and $C V_{M}$ consist of concrete and meta-variables.

Properties of UnifLRS

Proposition (Soundness)

For input P and successful output (Sol, \emptyset, Δ):

- All ground instances of $S o l$ that do not violate Δ are solutions of P.
- There exists at least one ground instance of $S o l$ which solves P.

Proposition (Completeness)

For any solution ρ of a letrec unification problem P there exists a final state $(S o l, \emptyset, \Delta)$ of UnifLRS s.t. ρ is an instance of Sol.

Theorem

UnifLRS is sound and complete and terminates in nondeterministic polynomial time and solutions are of polynomial size. The letrec unification problem is NP-complete.

Computing Joins

Structure of the LRSX-Tool

Computing Diagrams

program
transformation

- t_{1}, t_{2} are meta-expressions restricted by constraints ∇
- computing joins $\xrightarrow{*}$ requires abstract rewriting by rules $\ell \rightarrow \Delta r$
- meta-variables in ℓ, r are instantiable and meta-variables in t_{i} are fixed
- rewriting: match ℓ against t_{i} and show that the given constraints ∇ imply the needed constraints Δ

$$
(t, \nabla) \rightarrow(\sigma(r), \nabla \cup \sigma(\Delta)) \quad \text { if } \ell \rightarrow_{\Delta} r, t=\sigma(l), \text { and } \nabla \Longrightarrow \sigma(\Delta)
$$

σ is a matcher for the letrec matching problem $(\{\ell \unlhd t\}, \Delta, \nabla)$

Matching Algorithm MatchLRS

- For most cases: similar rules as the unification algorithm
- New rules for matching chain-variables, for example matching equations like:
- $C h[x, e] ; e n v \unlhd C h^{\prime}\left[x^{\prime}, e^{\prime}\right] ; e n v^{\prime}$
- Ch $[x, e] ; e n v \unlhd C h^{\prime}\left[x^{\prime}, e^{\prime}\right] ; e n v^{\prime}$
- New rules for checking that needed constraints Δ_{3} are implied by given constraints ∇_{3}.
Also infers constraints from the let variable condition:
Example: letrec $X_{1}=S_{1} ; X_{2}=S_{2}$ in \ldots implies validity of the non-capture constraint $\left(\operatorname{var} X_{1}, \lambda X_{2} .[]\right)$

Theorem [Sab17, Unif]

MatchLRS is sound and complete. The letrec matching problem is NP-complete.

Example: (gc)-Transformation

$$
(\mathrm{T}, \mathrm{gc}):=(\mathrm{T}, \mathrm{gc}, 1) \cup(\mathrm{T}, \mathrm{gc}, 2)
$$

Unification computes 192 overlaps and joining results in 324 diagrams which can be represented by the diagrams

and the answer diagram

$$
A n s \xrightarrow{T, g c} A n s
$$

Problematic Example: Overlap (SR,Ilet) and (T,Ilet)

(T,Ilet) T [letrec E in letrec E^{\prime} in $\left.S\right] \rightarrow T\left[\right.$ letrec $E ; E^{\prime}$ in $\left.S\right]$ where an NCC must hold s.t. $\operatorname{LetVars}\left(E^{\prime}\right) \cap \operatorname{Vars}(E)=\emptyset$
letrec E_{1} in
letrec E_{2} in
letrec E_{3} in S
SR,Ilet
letrec $E_{1} ; E_{2}$ in
letrec E_{3} in S

Given constraints:

- $\operatorname{Let} \operatorname{Vars}\left(E_{2}\right) \cap \operatorname{Vars}\left(E_{1}\right)=\emptyset$

Problematic Example: Overlap (SR,Ilet) and (T,Ilet)

(T,Ilet) T [letrec E in letrec E^{\prime} in $\left.S\right] \rightarrow T\left[\right.$ letrec $E ; E^{\prime}$ in $\left.S\right]$ where an NCC must hold s.t. $\operatorname{LetVars}\left(E^{\prime}\right) \cap \operatorname{Vars}(E)=\emptyset$
letrec E_{1} in
letrec E_{2} in
letrec E_{3} in S

SR,Ilet
letrec $E_{1} ; E_{2}$ in
letrec E_{3} in S

Given constraints:

- $\operatorname{Let} \operatorname{Vars}\left(E_{2}\right) \cap \operatorname{Vars}\left(E_{1}\right)=\emptyset$
- LetVars $\left(E_{3}\right) \cap \operatorname{Vars}\left(E_{2}\right)=\emptyset$

Problematic Example: Overlap (SR,Ilet) and (T,Ilet)

(T,Ilet) T [letrec E in letrec E^{\prime} in $\left.S\right] \rightarrow T\left[\right.$ letrec $E ; E^{\prime}$ in $\left.S\right]$ where an NCC must hold s.t. $\operatorname{LetVars}\left(E^{\prime}\right) \cap \operatorname{Vars}(E)=\emptyset$
letrec E_{1} in
letrec E_{2} in
letrec E_{3} in S

T,Ilet	letrec E_{1} in
	letrec $E_{2} ; E_{3}$ in S

SR,llet
letrec $E_{1} ; E_{2}$ in
letrec E_{3} in S T,llet

Given constraints:

- $\operatorname{Let} \operatorname{Vars}\left(E_{2}\right) \cap \operatorname{Vars}\left(E_{1}\right)=\emptyset$
- LetVars $\left(E_{3}\right) \cap \operatorname{Vars}\left(E_{2}\right)=\emptyset$

Problematic Example: Overlap (SR,Ilet) and (T,Ilet)

(T,Ilet) T [letrec E in letrec E^{\prime} in $\left.S\right] \rightarrow T\left[\right.$ letrec $E ; E^{\prime}$ in $\left.S\right]$ where an NCC must hold s.t. $\operatorname{LetVars}\left(E^{\prime}\right) \cap \operatorname{Vars}(E)=\emptyset$
letrec E_{1} in
letrec E_{2} in
letrec E_{3} in S

SR,Ilet
letrec $E_{1} ; E_{2}$ in letrec E_{3} in S

Given constraints:

- $\operatorname{Let} \operatorname{Vars}\left(E_{2}\right) \cap \operatorname{Vars}\left(E_{1}\right)=\emptyset$
- LetVars $\left(E_{3}\right) \cap \operatorname{Vars}\left(E_{2}\right)=\emptyset$

Needed constraints:

- $\operatorname{LetVars}\left(E_{2} ; E_{3}\right) \cap \operatorname{Vars}\left(E_{1}\right)=\emptyset$

Problematic Example: Overlap (SR,Ilet) and (T,Ilet)

(T,Ilet) T [letrec E in letrec E^{\prime} in $\left.S\right] \rightarrow T\left[\right.$ letrec $E ; E^{\prime}$ in $\left.S\right]$ where an NCC must hold s.t. $\operatorname{LetVars}\left(E^{\prime}\right) \cap \operatorname{Vars}(E)=\emptyset$
letrec E_{1} in
letrec E_{2} in
letrec E_{3} in S

T,llet	letrec E_{1} in
	letrec $E_{2} ; E_{3}$ in S

SR,Ilet
letrec $E_{1} ; E_{2}$ in
letrec E_{3} in S
Tale

Given constraints:
$-\operatorname{Let} \operatorname{Vars}\left(E_{2}\right) \cap \operatorname{Vars}\left(E_{1}\right)=\emptyset$

- LetVars $\left(E_{3}\right) \cap \operatorname{Vars}\left(E_{2}\right)=\emptyset$

Needed constraints:

- $\operatorname{LetVars}\left(E_{2} ; E_{3}\right) \cap \operatorname{Vars}\left(E_{1}\right)=\emptyset$
- LetVars $\left(E_{3}\right) \cap \operatorname{Vars}\left(E_{1} ; E_{2}\right)=\emptyset$

Instance: $E_{1} \mapsto x=z, \quad E_{2} \mapsto y=1, \quad E_{3} \mapsto z=2, \quad S \mapsto 3$

illegal capture of z

Given constraints:

- LetVars $(y=1) \cap \operatorname{Vars}(x=z)=\emptyset$
$-\operatorname{LetVars}(z=2) \cap \operatorname{Vars}(y=1)=\emptyset$

Needed constraints:

- LetVars $(y=1 ; z=2) \cap \operatorname{Vars}(x=z)=\emptyset$
$-\operatorname{LetVars}(z=2) \cap \operatorname{Vars}(x=z ; y=1)=\emptyset$

An Instance

Instance: $E_{1} \mapsto x=z, \quad E_{2} \mapsto y=1, \quad E_{3} \mapsto z=2, \quad S \mapsto 3$
letrec $x=z$ in
letrec $y=1$ in
letrec $z=2$ in 3
T,Ilet
letrec $x=z$ in
letrec $y=1 ; z=2$ in 3
$\downarrow \alpha$
letrec $x_{2}=z$ in
letrec $y_{2}=1 ; z_{2}=2$ in 3
:SR,Ilet
letrec $x_{2}=z ; y_{2}^{\sim_{\alpha}}=1 ; z_{2}=2$ in 3
letrec $x=z ; y=1$ in
letrec $z=2$ in 3
letrec $x_{1}=z ; y_{1}=1$ in
$\underset{\substack{\text { T,llet }}}{\underset{\rightarrow}{\rightarrow}}$ letrec $x_{1}=z ; y_{1}=1 ; z_{1}=2$ in 3
solution: use fresh α-renamings

Given constraints:

- LetVars $(y=1) \cap \operatorname{Vars}(x=z)=\emptyset$
- $\operatorname{LetVars}(z=2) \cap \operatorname{Vars}(y=1)=\emptyset$

Needed constraints:

- $\operatorname{LetVars}\left(y_{1}=1 ; z_{1}=2\right) \cap \operatorname{Vars}\left(x_{1}=z\right)=\emptyset$
- LetVars $\left(z_{2}=2\right) \cap \operatorname{Vars}\left(x_{2}=z ; y_{2}=1\right)=\emptyset$

Extending the Method by α-Renaming

- α-renaming on the meta-level
- Instances must fulfill the distinct variable convention (DVC):

Distinct variable convention DVC

A ground LRSX-expression fulfills the DVC iff

- the bound variables are disjoint from the free variables
- variables on binders are pairwise disjoint
- How to rename meta-variables X, S, E, D ?
\Rightarrow Requires meta-notations for symbolic α-renamings

Syntax of the Extended Meta-Language LRSX α

Variables

$$
\begin{aligned}
x \in \operatorname{Var}::= & \left\langle r c_{1}, \ldots, r c_{n}\right\rangle \cdot X \\
& \mid \quad\left\langle r c_{1}, \ldots, r c_{n}\right\rangle \cdot \mathbf{x}
\end{aligned}
$$

(variable meta-variable)
(concrete variable)
Expressions

```
\(s \in \operatorname{Expr}::=\left\langle\alpha_{S, i}, r c_{1}, \ldots, r c_{n}\right\rangle \cdot S \quad\) (expression meta-variable)
\(\left\langle\alpha_{D, i}, r c_{1}, \ldots, r c_{n}\right\rangle \cdot D[s] \quad\) (context meta-variable)
```

Environments

$$
e n v \in \operatorname{Env}::=\left\langle\alpha_{E, i}, r c_{1}, \ldots, r c_{n}\right\rangle \cdot E ; \text { env (environment meta-variable) }
$$

$$
\text { a component } \alpha_{U, i} \alpha \text {-renames instances of } U
$$

Atomic renaming components
$r c \in$ ARC $::=\alpha_{x, i}$
| $L V\left(\alpha_{E, i}\right)$
$C V\left(\alpha_{D, i}\right)$
(fresh renaming of variable x) (restriction of $\alpha_{E, i}$ on $\operatorname{Let} \operatorname{Vars}(E)$)
(restriction of $\alpha_{D, i}$ on $\operatorname{Cap} \operatorname{Vars}(D)$)

- λX.var X is renamed into $\lambda\left\langle\alpha_{X, 1}\right\rangle \cdot X$.var $\left\langle\alpha_{X, 1}\right\rangle \cdot X$
- $\lambda X . S$ is renamed into $\lambda\left\langle\alpha_{X, 1}\right\rangle \cdot X .\left\langle\alpha_{S, 1}, \alpha_{X, 1}\right\rangle \cdot S$
- $\lambda X . \lambda X$.var X is renamed into
$\lambda\left\langle\alpha_{X, 1}\right\rangle \cdot X . \lambda\left\langle\alpha_{X, 2}\right\rangle \cdot X . \operatorname{var}\left\langle\alpha_{X, 2}, \alpha_{X, 1}\right\rangle \cdot X$ and simplified to $\lambda\left\langle\alpha_{X, 1}\right\rangle \cdot X \cdot \lambda\left\langle\alpha_{X, 2}\right\rangle \cdot X \cdot \operatorname{var}\left\langle\alpha_{X, 2}\right\rangle \cdot X$
- letrec E in S is renamed into
letrec $\left\langle\alpha_{E, 1}\right\rangle \cdot E$ in $\left\langle\alpha_{S}, L V\left(\alpha_{E, 1}\right)\right\rangle \cdot S$

Tasks for symbolic α-renaming [Sab17, PPDP]:

- A sound algorithm to α-rename $s \in \operatorname{LRSX}$ into $A R(s) \in \operatorname{LRSX} \alpha$
- A sound matching algorithm to solve $(s, \nabla) \unlhd\left(s^{\prime}, \Delta\right)$ where $s \in \operatorname{LRSX}, s^{\prime} \in \operatorname{LRSX} \alpha$
- A sound test for extended α-equivalence for constrained LRSX α-expressions
- Simplification of α-renamings
- Refreshing α-renamings after rewriting.

Structure of the LRSX-Tool

Automated Induction: Ideas [RSSS12, IJCAR]

- Ignore the concrete expressions, only keep: kind of rule (SR or transformation) and rule-names, and answers as abstract constant

$$
A n s \xrightarrow{T, g c} A n s
$$

Automated Induction: Ideas [RSSS12, IJCAR]

- Ignore the concrete expressions, only keep: kind of rule (SR or transformation) and rule-names, and answers as abstract constant

$$
A n s \xrightarrow{T, g c} A n s
$$

- Diagrams represent string rewrite rules on strings consisting of elements (SR, name), (T, name), and Answer

$$
(T, g c),(S R, \text { lbeta }) \rightarrow(S R, \text { lbeta }),(T, g c) \quad(T, g c), \text { Answer } \rightarrow \text { Answer }
$$

Automated Induction: Ideas [RSSS12, IJCAR]

- Ignore the concrete expressions, only keep: kind of rule (SR or transformation) and rule-names, and answers as abstract constant

$$
A n s \xrightarrow{T, g c} A n s
$$

- Diagrams represent string rewrite rules on strings consisting of elements (SR, name), (T, name), and Answer

$$
(T, g c),(S R, \text { lbeta }) \rightarrow(S R, \text { lbeta }),(T, g c) \quad(T, g c), \text { Answer } \rightarrow \text { Answer }
$$

- Termination of the string rewrite system implies successful induction

$$
(T, g c),\left(S R, a_{1}\right), \ldots,\left(S R, a_{n}\right), \text { Answer } \xrightarrow{*}\left(S R, a_{1}^{\prime}\right), \ldots,\left(S R, a_{m}^{\prime}\right), \text { Answer }
$$

- We use term rewrite systems and innermost-termination and apply AProVE and certifier CeTA

Example

Obtained TRS:

```
Tgc(SRlbeta(x)) -> SRlbeta(Tgc(x))
Tgc(SRcp(x)) -> SRcp(Tgc(x))
Tgc(SRlll(x)) -> SRlll(Tgc(x))
Tgc(SRlll(x)) -> Tgc(x)
Tgc(Answer) -> Answer
```

Innermost termination is shown by AProVE and certified by CeTA

Transitive Closures are Required

Example:

$$
A\left[(\lambda X . S) S^{\prime}\right] \longleftarrow A, g c, 2 \quad A\left[(\text { letrec } E \text { in }(\lambda X . S)) S^{\prime}\right]
$$

Transitive Closures are Required

Example:

Transitive Closures are Required

Example:

Encoding of Transitive Closures

is encoded by:
Tgc (SRlbeta (x)) -> gen (k, x)
gen(s(k),x) -> SRlll (gen(k,x))
gen(s(k),x) $->$ SRlll (SRlbeta (Tgc (x)))

- free variable k on the right hand side to guess the number of steps
- AProVE \& CeTA can handle such TRSs

Experiments

- LRSX Tool available from http://goethe.link/LRSXTOOL61
- computes diagrams and performs the automated induction \# overlaps \# joins computation time

Calculus $L_{\text {need }}$ (11SR rules, 16 transformations, 2 answers)

\rightarrow	2242	5425	48 secs.
\leftarrow	3001	7273	116 secs.

Calculus $L_{\text {need }}^{+ \text {seq }}$ (17 SR rules, 18 transformations, 2 answers)

| \rightarrow | 4898 | 14729 | 149 secs. |
| :--- | :--- | :--- | :--- | :--- |
| \leftarrow | 6437 | 18089 | 255 secs. |

Calculus LR (76 SR rules, 43 transformations, 17 answers)

\rightarrow	87041	391264	~ 19 hours
\leftarrow	107333	429104	~ 16 hours

Conclusion

- Automation of the diagram method
- Quite expressive meta-language LRSX
- Algorithms for unification, matching, α-renaming
- Encoding technique to apply termination provers for TRSs
- Experiments show that the automation works well for call-by-need calculi

Other applications

- Further calculi, for instance, process calculi with structural congruence
- Correctness of translations between calculi
- Proving improvements

Other meta-languages

- Nominal techniques to ease reasoning on α-renamings: in progress, e.g.
- Nominal unification for a meta-language with letrec [SSKLV16, LOPSTR]
- Nominal unification for a meta-language with context variables [SSS18, FSCD, to appear]
- ...

Thank you!

