

Correctness of Program Transformations: Automating Diagram-Based Proofs

David Sabel[†]

Goethe-University Frankfurt am Main, Germany

[†]Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.

Motivation

- reasoning on program transformations w.r.t. operational semantics
- for program calculi with higher-order constructs and recursive bindings, e.g. **letrec-expressions**:

letrec
$$x_1 = s_1; \ldots; x_n = s_n$$
 in t

• extended call-by-need lambda calculi with letrec that model core languages of **lazy functional programming languages** like Haskell

Motivation

A program transformation is a binary relation on program fragments

Motivation

A program transformation is a binary relation on program fragments

Some applications:

- Compilers: Optimizations (inlining, partial evaluation,...)
- Code Refactoring: Transformations to improve readability and maintainability
- Theorem Provers: Transforming programs in proofs

Program transformation T is correct iff $T \subseteq \sim_c$

- Contextual equivalence: $e \sim_c e'$ iff $e \leq_c e'$ and $e \geq_c e'$
- Contextual preorder: $e \leq_c e'$ iff $\forall C: C[e] \downarrow \implies C[e'] \downarrow$
- \downarrow means successful evaluation:

 $e{\downarrow}:=e\xrightarrow{sr,*}e'$ and e' is a successful result

- where \xrightarrow{sr} is the small-step operational semantics (standard reduction)
- $\bullet \mbox{ and } \xrightarrow{sr,*}$ is the reflexive-transitive closure of \xrightarrow{sr}

Convergence Preservation

- Convergence preservation: $e \leq_{\downarrow} e'$ iff $e \downarrow \implies e' \downarrow$
- We only consider transformations T such that $T \subseteq \leq_{\downarrow} \implies T \subseteq \leq_c$
- No restriction, since the contextual closure of T fulfills this property.
- A context lemma allows for smaller closures (reduction contexts)
- $\bullet \ T \subseteq \geq_c$ can be proved by showing $T^{-1} \subseteq \leq_c$

Required task:

 $\bullet\,$ Base case: For all successful e

 $\bullet\,$ Base case: For all successful e

 $\bullet\,$ Base case: For all successful e

 $\bullet\,$ General case: For all programs e

 $\bullet\,$ Base case: For all successful e

• General case: For all programs e

Focused Languages and Previous Results

The diagram technique was, for instance, used for

- call-by-need lambda calculi with letrec, data constructors, case, and seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]
- process calculi with call-by-value [NSSSS07, MFPS] or call-by-need evaluation [SSS11, PPDP] and [SSS12, LICS]
- reasoning on whether program transformations are improvements w.r.t. the run-time [SSS15, PPDP] and [SSS17, SCP]

Focused Languages and Previous Results

The diagram technique was, for instance, used for

- call-by-need lambda calculi with letrec, data constructors, case, and seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]
- process calculi with call-by-value [NSSSS07, MFPS] or call-by-need evaluation [SSS11, PPDP] and [SSS12, LICS]
- reasoning on whether program transformations are improvements w.r.t. the run-time [SSS15, PPDP] and [SSS17, SCP]

Conclusions from these works

- The diagram method works well
- The method requires to compute overlaps (error-prone, tedious,...)
- Automation of the method would be valuable

Automation of the Diagram-Method

Structure of the LRSX-Tool

Representation of the Input

Structure of the LRSX-Tool

The syntax of extended call-by-need lambda-calculi typically includes:

- lambda-calculus: variables x, abstractions $\lambda x.e$, applications (e e')
- data-constructors True, False, Nil, Cons $e_1 e_2, \ldots$
- data-selectors / case-expressions
- let- and recursive let expressions: letrec $x_1 = e_1, \ldots, x_n = e_n$ in e

The syntax of extended call-by-need lambda-calculi typically includes:

- lambda-calculus: variables x, abstractions $\lambda x.e$, applications (e e')
- data-constructors True, False, Nil, Cons $e_1 e_2, \ldots$
- data-selectors / case-expressions
- let- and recursive let expressions: letrec $x_1 = e_1, \ldots, x_n = e_n$ in e

Language LRS parametric over \mathcal{F}

Expressions $s \in \mathbf{Expr} ::= \operatorname{var} \mathbf{x} \mid \operatorname{letrec} env \operatorname{in} s \mid (f r_1 \dots r_{ar(f)})$ where $r_i \text{ is } o_i, s_i, \text{ or } \mathbf{x}_i \text{ specified by } f \in \mathcal{F}$

H.O.-Expressions $o \in \mathbf{HExpr}^n ::= x_1 \dots x_n . s$

Environments $env \in \mathbf{Env} ::= \emptyset \mid x = s; env$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts: $A ::= [\cdot] | (A \ e)$ $R ::= A | \text{letrec } Env \text{ in } A | \text{letrec } \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env, \text{ in } A[x_1]$ Standard-reduction rules and some program transformations: $(SR, \text{lbeta}) R[(\lambda x.e_1) \ e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1]$ $(SR, \text{llet}) \quad \text{letrec } Env_1 \text{ in } \text{letrec } Env_2 \text{ in } e \rightarrow \text{letrec } Env_1, Env_2 \text{ in } e$ \dots $(T, \text{cpx}) \quad T[\text{letrec } x = y, Env \text{ in } C[x]] \rightarrow T[\text{letrec } x = y, Env \text{ in } C[y]]$ $(T, \text{gc}, 1) \quad T[\text{letrec } Env, Env' \text{ in } e] \rightarrow T[\text{letrec } Env' \text{ in } e],$ $\text{ if } LetVars(Env) \cap FV(e, Env') = \emptyset$ $(T, \text{gc}, 2) \quad T[\text{letrec } Env \text{ in } e] \rightarrow T[e] \quad \text{ if } LetVars(Env) \cap FV(e) = \emptyset$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts: $A ::= \left[\cdot \right] \mid (A \ e)$ $R ::= A \mid \texttt{letrec} \ Env \ \texttt{in} \ A \mid \texttt{letrec} \ \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env, \texttt{in} \ A[x_1] \mid A \mid \texttt{letrec} \ A \mid \texttt$ Standard-reduction rules and some program transformations: $(SR,Ibeta) R[(\lambda x.e_1) e_2] \rightarrow R[Ietrec x = e_2 in e_1]$ (SR,llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1, Env_2 in e(T,cpx) T[letrec x = y, Env in $C[x]] \rightarrow T[$ letrec x = y, Env in C[y]](T,gc,1) T[letrec Env, Env' in $e] \to T[$ letrec Env' in e],if $LetVars(Env) \cap FV(e, Env') = \emptyset$ (T,gc,2) T[letrec Env in $e] \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- contexts of different classes
- environments Env_i and environment chains $\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts: $A := [\cdot] \mid (A \ e)$ Standard-reduction rules and some program transformations: $(SR,Ibeta) R[(\lambda x.e_1) e_2] \rightarrow R[Ietrec x = e_2 in e_1]$ (SR,llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1, Env_2 in e(T,cpx) T[letrec x = y, Env in $C[x]] \rightarrow T[$ letrec x = y, Env in C[y]](T,gc,1) **T**[letrec Env, Env' in e] \rightarrow **T**[letrec Env' in e], if $LetVars(Env) \cap FV(e, Env') = \emptyset$ (T,gc,2) **T**[letrec Env in e] \rightarrow **T**[e] if Let Vars(Env) \cap FV(e) = \emptyset

- contexts of different classes
- environments Env_i and environment chains $\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts: $A := [\cdot] \mid (A \ e)$ Standard-reduction rules and some program transformations: $(SR,Ibeta) R[(\lambda x.e_1) e_2] \rightarrow R[Ietrec x = e_2 in e_1]$ (SR,llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e(T,cpx) T[letrec x = y, Env in $C[x]] \rightarrow T[$ letrec x = y, Env in C[y]](T,gc,1) T[letrec Env, Env' in $e] \rightarrow T[$ letrec Env' in e],if $LetVars(Env) \cap FV(e, Env') = \emptyset$ (T,gc,2) T[letrec Env in $e] \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- contexts of different classes
- environments Env_i and environment chains $\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts: $A ::= [\cdot] | (A \ e)$ $R ::= A | \text{letrec } Env \text{ in } A | \text{letrec } \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env, \text{ in } A[x_1]$ Standard-reduction rules and some program transformations: $(SR, \text{lbeta}) R[(\lambda x. e_1) \ e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1]$ $(SR, \text{lbet}) \text{ letrec } Env_1 \text{ in letrec } Env_2 \text{ in } e \rightarrow \text{letrec } Env_1, Env_2 \text{ in } e$... $(T, \text{cpx}) \quad T[\text{letrec } x = y, Env \text{ in } C[x]] \rightarrow T[\text{letrec } x = y, Env \text{ in } C[y]]$ $(T, \text{gc}, 1) \quad T[\text{letrec } Env, Env' \text{ in } e] \rightarrow T[\text{letrec } Env' \text{ in } e], \text{ if } LetVars(Env) \cap FV(e, Env') = \emptyset$ $(T, \text{gc}, 2) \quad T[\text{letrec } Env \text{ in } e] \rightarrow T[e] \text{ if } LetVars(Env) \cap FV(e) = \emptyset$

- contexts of different classes
- environments Env_i and environment chains $\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}$

Syntax of the Meta-Language LRSX

Variables $x \in Var ::= X$ (variable meta-variable) (concrete variable) х Expressions $s \in \mathbf{Expr} ::= S$ (expression meta-variable) D[s](context meta-variable) letrec env in s(letrec-expression) (variable) $\operatorname{var} x$ $(f r_1 \dots r_{ar(f)})$ (function application) where r_i is o_i, s_i , or x_i specified by f $o \in \mathsf{HExpr}^n ::= x_1 \dots x_n . s$ (higher-order expression) Environments $env \in \mathbf{Env} ::= \emptyset$ (empty environment) (environment meta-variable) E:envCh[x,s]; env(chain meta-variable) x = s; env(binding) $Ch[\mathbf{x}, \mathbf{s}]$ represents chains $\mathbf{x} = C_1[var x_1]; x_1 = C_2[var x_2]; \dots; x_n = C_n[\mathbf{s}]$ where C_i are contexts of class cl(Ch)

Operational semantics of typical call-by-need calculi (excerpt)

(T,cpx)
$$T[$$
letrec $x = y, Env$ in $C[x]] \rightarrow T[$ letrec $x = y, Env$ in $C[y]]$
(T,gc,1) $T[$ letrec Env, Env' in $e] \rightarrow T[$ letrec Env' in $e],$
if $LetVars(Env) \cap FV(e, Env') = \emptyset$

T,gc,2)
$$T[$$
letrec Env in $e] \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- (gc): Env must not be empty; side condition on variables
- (cpx): x, y are not captured by C in C[x], C[y]

Operational semantics of typical call-by-need calculi (excerpt)

(T,cpx) T[letrec x = y, Env in $C[x]] \to T[$ letrec x = y, Env in C[y]](T,gc,1) T[letrec Env, Env' in $e] \to T[$ letrec Env' in e],if $LetVars(Env) \cap FV(e, Env') = \emptyset$

 $(\mathsf{T},\mathsf{gc},\mathsf{2}) \ T[\texttt{letrec} \ Env \ \texttt{in} \ e] \ \rightarrow \ T[e] \qquad \mathsf{if} \ \underline{LetVars}(Env) \cap FV(e) = \emptyset$

- (gc): Env must not be empty; side condition on variables
- (cpx): x, y are not captured by C in C[x], C[y]

Operational semantics of typical call-by-need calculi (excerpt)

(T,cpx)
$$T[\texttt{letrec } x = y, Env \texttt{ in } C[x]] \rightarrow T[\texttt{letrec } x = y, Env \texttt{ in } C[y]]$$

(T,cp,1) $T[\texttt{letrec } Env, Env' \texttt{ in } e] \rightarrow T[\texttt{letrec } Env' \texttt{ in } e],$

$$[f_{letrec Env, Env' in e]} \rightarrow T[letrec Env' in e] \\ \text{if } LetVars(Env) \cap FV(e, Env') = \emptyset$$

 $(\mathsf{T},\mathsf{gc},\mathsf{2}) \ T[\texttt{letrec} \ Env \ \texttt{in} \ e] \ \rightarrow \ T[e] \qquad \texttt{if} \ Let Vars(Env) \cap FV(e) = \emptyset$

- (gc): Env must not be empty; side condition on variables
- (cpx): x, y are not captured by C in C[x], C[y]

Operational semantics of typical call-by-need calculi (excerpt)

(T,cpx)
$$T[$$
letrec $x = y, Env$ in $C[x]] \to T[$ letrec $x = y, Env$ in $C[y]]$
(T,gc,1) $T[$ letrec Env, Env' in $e] \to T[$ letrec Env' in $e],$
if $LetVars(Env) \cap FV(e, Env') = \emptyset$
(T,gc,2) $T[$ letrec Env in $e] \to T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- (gc): Env must not be empty; side condition on variables
- (cpx): x, y are not captured by C in C[x], C[y]

Constraints

A constraint tuple $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ consists of

- non-empty context constraints Δ_1 : set of context variables
- non-empty environment constraints Δ_2 : set of environment variables
- non-capture constraints (NCCs) Δ_3 : set of pairs (s, d)

(s an expression, d a context)

Ground substitution ρ satisfies $(\Delta_1, \Delta_2, \Delta_3)$ iff

- $\rho(D) \neq [\cdot]$ for all $D \in \Delta_1$
- $\rho(E) \neq \emptyset$ for all $E \in \Delta_2$
- hole of ho(d) does not capture variables of ho(s), for all $(s,d)\in\Delta_3$

Constraints

A constraint tuple $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ consists of

- non-empty context constraints Δ_1 : set of context variables
- non-empty environment constraints Δ_2 : set of environment variables
- non-capture constraints (NCCs) Δ_3 : set of pairs (s, d)

(s an expression, d a context)

Ground substitution ρ satisfies $(\Delta_1, \Delta_2, \Delta_3)$ iff

- $\rho(D) \neq [\cdot]$ for all $D \in \Delta_1$
- $\rho(E) \neq \emptyset$ for all $E \in \Delta_2$
- hole of $\rho(d)$ does not capture variables of $\rho(s)$, for all $(s,d) \in \Delta_3$

Example:

 $\begin{array}{l} s & = \texttt{letrec} \ E_1 \ \texttt{in} \ \texttt{letrec} \ E_2 \ \texttt{in} \ S \\ \Delta & = (\emptyset, \{E_1, E_2\}, \{(\texttt{letrec} \ E_2 \ \texttt{in} \ S, \texttt{letrec} \ E_1 \ \texttt{in} \ [\cdot])\})) \\ semantics(s, \Delta) & = \texttt{nested} \ \texttt{letrec-expressions} \ \texttt{with} \ \texttt{unused} \ \texttt{outer} \ \texttt{environment} \end{array}$

Representation of Rules

Standard reductions and transformations are represented as

 $\ell \to_\Delta r$

where ℓ, r are LRSX-expressions and Δ is a constraint-tuple Example:

(T,gc,2) T[letrec Env in $e] \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

is represented as

D[letrec E in $S] \rightarrow_{(\emptyset, \{E\}, \{(S, \text{letrec } E \text{ in } [\cdot])\})} D[S]$

Computing Overlaps

Structure of the LRSX-Tool

Computing Overlaps by Unification

- As usual, we assume that the meta-variables in ℓ_A →_{Δ_A} r_A are pairwise disjoint from meta-variables in ℓ_B →_{Δ_B} r_B are pairwise disjoint (use fresh copies of the rules)
- Unification also has to treat / respect the constraints $\Delta := \Delta_A \cup \Delta_B$

A letrec unification problem is a tuple $P=(\Gamma,\Delta)$ with

- Γ : unification equations $s \doteq s'$ of LRSX-expressions
- $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ is a constraint tuple.

Occurrence restrictions:

- Each S-variable occurs at most twice in Γ
- Each E-, Ch-, D-variable occurs at most once in Γ
- Ch-variables are only allowed in one letrec-environment in Γ

Unifier and Solution of $P = (\Gamma, \Delta)$

A substitution ρ is a **unifier of** P iff

- $\bullet \ \rho(s) \sim_{let} \rho(s') \text{ for all } s \doteq s' \in \Gamma$
- ρ can be instantiated to satisfy Δ

A unifier ρ is a solution of P if ρ is a ground substitution.

 \sim_{let} = syntactic equality upto permuting bindings in environments

NP-Hardness

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification problem exists is NP-hard.

Proof by a reduction from MONOTONE ONE-IN-THREE-3-SAT.

Sketch: For each clause $C_i = \{S_{i,1}, S_{i,2}, S_{i,3}\}$, add the unification equation

letrec $Y_{i,1} = S_{i,1}$; $Y_{i,2} = S_{i,2}$; $Y_{i,3} = S_{i,3}$ in c= letrec $y_{i,1} = false$; $y_{i,2} = false$; $y_{i,3} = true$ in c

NP-Hardness

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification problem exists is NP-hard.

Proof by a reduction from MONOTONE ONE-IN-THREE-3-SAT.

Sketch: For each clause $C_i = \{S_{i,1}, S_{i,2}, S_{i,3}\}$, add the unification equation

letrec $Y_{i,1} = S_{i,1}$; $Y_{i,2} = S_{i,2}$; $Y_{i,3} = S_{i,3}$ in c= letrec $y_{i,1} = false$; $y_{i,2} = false$; $y_{i,3} = true$ in c

Remark: Equations have no meta-variables on the right hand side Matching is already NP-hard.

Intermediate data structure of the algorithm: $(\mathit{Sol},\Gamma,\Delta)$ where

- Sol is a computed substitution
- Γ is a set of equations
- $\Delta = (\Delta_1, \Delta_2, \Delta_3, \Delta_4)$
- $(\Delta_1, \Delta_2, \Delta_3)$ are constraints as in a letrec unification problem
- Δ_4 are environment equations $E_1; \ldots; E_n = Ch[x, s]$

Input:

For $P = (\Gamma, \Delta_1, \Delta_2, \Delta_3)$, UnifLRS starts with $(Id, \Gamma, (\Delta_1, \Delta_2, \Delta_3, \emptyset))$

Output (on each branch): *Fail* or final state (Sol, \emptyset, Δ)

Selection of Rules (1)

$$\frac{(\mathit{Sol},\Gamma{\cup}\{\mathsf{x}\doteq\mathsf{x}\},\Delta)}{(\mathit{Sol},\Gamma,\Delta)}$$

$$\frac{(Sol,\Gamma\cup\{S\doteq s\},\Delta)}{(Sol\circ\{S\mapsto s\},\Gamma[s/S],\Delta[s/S])} \text{ if } S \text{ is not a proper sub-expression of } s$$

 $\frac{(Sol, \Gamma \cup \{\texttt{letrec} \ env_1 \ \texttt{in} \ s_1 \doteq \texttt{letrec} \ env_2 \ \texttt{in} \ s_2\}, \Delta)}{(Sol, \Gamma \cup \{env_1 \doteq env_2, s_1 \doteq s_2\}, \Delta)}$

Selection of Rules (2)

Unifying bindings and chains:

 $(Sol, \Gamma \cup \{x = t; env_1 \doteq Ch[y, s]; env_2\}, \Delta)$

$$(Sol \circ \sigma, \Gamma \cup \{x = t \doteq y = D[s], env_1 \doteq env_2\}, \Delta \sigma)$$

$$\sigma = \{ Ch[y, s] \mapsto y = D[s] \}$$
 "equal"

$$\begin{array}{l} (Sol \circ \sigma, \Gamma \cup \{x = t \doteq y = D[\texttt{var} \ Y], env_1 \doteq Ch_2[Y, s]; env_2\}, \Delta \sigma) \\ \sigma = \{ \begin{array}{l} Ch_1[y, s] \mapsto y = D[\texttt{var} \ Y]; Ch_2[Y, s] \} \end{array}$$

 $\begin{array}{l} (Sol \circ \sigma, \Gamma \cup \{x = t \doteq Y_1 = D[\texttt{var} \ Y_2], env_1 \doteq Ch_1[y, \texttt{var} \ Y_1]; Ch_2[Y_2, s]; env_2\}, \Delta \sigma) \\ \sigma = \{ Ch[y, s] \mapsto Ch_1[y, (\texttt{var} \ Y_1)]; Y_1 = D[\texttt{var} \ Y_2]; Ch_2[Y_2, s] \} \text{ "infix"} \end{array}$

$$(Sol \circ \sigma, \Gamma \cup \{x = t \doteq Y_1 = D[s], env_1 \doteq Ch_2[y, \operatorname{var} Y_1]; env_2, \Delta \sigma\})$$

$$\sigma = \{ Ch_1[y, s] \mapsto Ch_2[y, \operatorname{var} Y_1]; Y_1 = D[s] \}$$
 "suffix"

Selection of Failure Rules

Standard cases:

$$\frac{(Sol, \Gamma \cup \{(\mathsf{x}_1 \doteq \mathsf{x}_2)\}, \Delta)}{Fail}$$

$$\frac{(Sol,\Gamma \cup \{(S \doteq s)\}, \Delta)}{\textit{Fail}} \ \ \text{if} \ S \ \text{is a proper subterm of} \ s$$

Checking non-capture contraints:

$$\frac{(Sol, \Gamma, (\Delta_1, \Delta_2, \Delta_3 \cup \{(s, d)\}, \Delta_4))}{\textit{Fail}} \text{ if } Var_M(s) \cap CV_M(d) \neq \emptyset$$

 Var_M and CV_M consist of concrete and meta-variables.

Properties of UnifLRS

Proposition (Soundness)

For input P and successful output (Sol, \emptyset, Δ) :

- All ground instances of Sol that do not violate Δ are solutions of P.
- There exists at least one ground instance of Sol which solves P.

Proposition (Completeness)

For any solution ρ of a letrec unification problem P there exists a final state (Sol, \emptyset, Δ) of UnifLRS s.t. ρ is an instance of Sol.

Theorem

UnifLRS is sound and complete and terminates in nondeterministic polynomial time and solutions are of polynomial size. The letrec unification problem is NP-complete.

Computing Joins

Structure of the LRSX-Tool

Computing Diagrams

- t_1, t_2 are meta-expressions restricted by constraints ∇
- computing joins $\xrightarrow{*}$ requires abstract rewriting by rules $\ell \to_\Delta r$
- meta-variables in ℓ, r are instantiable and meta-variables in t_i are fixed
- rewriting: match ℓ against t_i and show that the given constraints ∇ imply the needed constraints Δ

 $(t,\nabla) \to (\sigma(r),\nabla \cup \sigma(\Delta)) \qquad \text{if } \ell \to_\Delta r \text{, } t = \sigma(l) \text{, and } \nabla \implies \sigma(\Delta)$

 σ is a matcher for the letrec matching problem $(\{\ell \leq t\}, \Delta, \nabla)$

Matching Algorithm MatchLRS

- For most cases: similar rules as the unification algorithm
- New rules for matching chain-variables, for example matching equations like:
 - $Ch[x, e]; env \leq Ch'[x', e']; env'$
 - $Ch[x, e]; env \leq Ch'[x', e']; env'$
- New rules for checking that needed constraints Δ_3 are implied by given constraints ∇_3 .

Also infers constraints from the let variable condition:

Example: letrec $X_1 = S_1; X_2 = S_2$ in ... implies validity of the non-capture constraint (var $X_1, \lambda X_2$.[])

Theorem [Sab17, Unif]

MatchLRS is sound and complete. The letrec matching problem is NP-complete.

Example: (gc)-Transformation

 $(\mathsf{T},\mathsf{gc}):=(\mathsf{T},\mathsf{gc},1)\cup(\mathsf{T},\mathsf{gc},2)$

Unification computes 192 overlaps and joining results in 324 diagrams which can be represented by the diagrams

and the answer diagram

$$Ans \xrightarrow{T,gc} Ans$$

(T,llet) $T[\texttt{letrec } E \texttt{ in letrec } E' \texttt{ in } S] \rightarrow T[\texttt{letrec } E; E' \texttt{ in } S]$ where an NCC must hold s.t. $LetVars(E') \cap Vars(E) = \emptyset$

```
letrec E_1 in

letrec E_2 in

letrec E_3 in S

SR,llet

letrec E_1; E_2 in

letrec E_3 in S
```

Given constraints:

- $LetVars(E_2) \cap Vars(E_1) = \emptyset$

(T,llet) $T[\texttt{letrec } E \texttt{ in } \texttt{letrec } E' \texttt{ in } S] \rightarrow T[\texttt{letrec } E; E' \texttt{ in } S]$ where an NCC must hold s.t. $LetVars(E') \cap Vars(E) = \emptyset$

Given constraints:

- $LetVars(E_2) \cap Vars(E_1) = \emptyset$
- $LetVars(E_3) \cap Vars(E_2) = \emptyset$

(T,llet) $T[\texttt{letrec } E \texttt{ in } \texttt{letrec } E' \texttt{ in } S] \rightarrow T[\texttt{letrec } E; E' \texttt{ in } S]$ where an NCC must hold s.t. $LetVars(E') \cap Vars(E) = \emptyset$

Given constraints:

- $LetVars(E_2) \cap Vars(E_1) = \emptyset$
- $LetVars(E_3) \cap Vars(E_2) = \emptyset$

(T,llet) $T[\texttt{letrec } E \texttt{ in } \texttt{letrec } E' \texttt{ in } S] \rightarrow T[\texttt{letrec } E; E' \texttt{ in } S]$ where an NCC must hold s.t. $LetVars(E') \cap Vars(E) = \emptyset$

Given constraints:

-
$$LetVars(E_2) \cap Vars(E_1) = \emptyset$$

- $LetVars(E_3) \cap Vars(E_2) = \emptyset$

Needed constraints: - $LetVars(E_2; E_3) \cap Vars(E_1) = \emptyset$

(T,llet) $T[\texttt{letrec } E \texttt{ in } \texttt{letrec } E' \texttt{ in } S] \rightarrow T[\texttt{letrec } E; E' \texttt{ in } S]$ where an NCC must hold s.t. $LetVars(E') \cap Vars(E) = \emptyset$

Given constraints:

-
$$LetVars(E_2) \cap Vars(E_1) = \emptyset$$

- $LetVars(E_3) \cap Vars(E_2) = \emptyset$

Needed constraints:

-
$$LetVars(E_2; E_3) \cap Vars(E_1) = \emptyset$$

- $LetVars(E_3) \cap Vars(E_1; E_2) = \emptyset$

An Instance

Instance: $E_1 \mapsto x=z, E_2 \mapsto y=1, E_3 \mapsto z=2, S \mapsto 3$

illegal capture of z

Given constraints:

- $LetVars(y=1) \cap Vars(x=z) = \emptyset$

- Let
$$Vars(z=2) \cap Vars(y=1) = \emptyset$$

Needed constraints:

- $LetVars(y=1; z=2) \cap Vars(x=z) = \emptyset$

-
$$LetVars(z=2) \cap Vars(x=z; y=1) = \emptyset$$

An Instance

Instance: $E_1 \mapsto x=z, E_2 \mapsto y=1, E_3 \mapsto z=2, S \mapsto 3$

solution: use fresh α -renamings

Given constraints:

Needed constraints:

- $LetVars(y=1) \cap Vars(x=z) = \emptyset$

- Let
$$Vars(z=2) \cap Vars(y=1) = \emptyset$$

-
$$LetVars(y_1=1; z_1=2) \cap Vars(x_1=z) = \emptyset$$

-
$$LetVars(z_2=2) \cap Vars(x_2=z; y_2=1) = \emptyset$$

Extending the Method by $\alpha\text{-Renaming}$

- α -renaming on the meta-level
- Instances must fulfill the distinct variable convention (DVC):

Distinct variable convention DVC

A ground LRSX-expression fulfills the DVC iff

• the bound variables are disjoint from the free variables

• variables on binders are pairwise disjoint

- How to rename meta-variables X, S, E, D?
 - \Rightarrow Requires meta-notations for symbolic $\alpha\text{-renamings}$

Syntax of the Extended Meta-Language LRSXlpha

Variables

$$\begin{aligned} x \in \mathbf{Var} &::= \langle rc_1, \dots, rc_n \rangle \cdot X \\ &| \langle rc_1, \dots, rc_n \rangle \cdot \mathbf{x} \end{aligned}$$

Expressions

$s \in \mathbf{Expr} ::= \langle \alpha_{S,i}, rc_1, \dots, rc_n \rangle \cdot S \\ | \langle \alpha_{D,i}, rc_1, \dots, rc_n \rangle \cdot D[s] \\ | \dots$

(variable meta-variable) (concrete variable)

(expression meta-variable) (context meta-variable)

Environments

 $env \in \mathbf{Env} ::= \langle \alpha_{E,i}, rc_1, \dots, rc_n \rangle \cdot E; env \quad (\text{environment meta-variable}) \mid \dots$

a component $\alpha_{U,i} \alpha$ -renames instances of U

Atomic renaming components

$$rc \in \mathsf{ARC} ::= \alpha_{x,i} \\ | LV(\alpha_{E,i}) \\ | CV(\alpha_{D,i})$$

(fresh renaming of variable x) (restriction of $\alpha_{E,i}$ on LetVars(E)) (restriction of $\alpha_{D,i}$ on CapVars(D))

Examples

- $\lambda X. \text{var } X$ is renamed into $\lambda \langle \alpha_{X,1} \rangle \cdot X. \text{var } \langle \alpha_{X,1} \rangle \cdot X$
- $\lambda X.S$ is renamed into $\lambda \langle \alpha_{X,1} \rangle \cdot X. \langle \alpha_{S,1}, \alpha_{X,1} \rangle \cdot S$
- $\lambda X.\lambda X.$ var X is renamed into $\lambda \langle \alpha_{X,1} \rangle \cdot X.\lambda \langle \alpha_{X,2} \rangle \cdot X.$ var $\langle \alpha_{X,2}, \alpha_{X,1} \rangle \cdot X$ and simplified to $\lambda \langle \alpha_{X,1} \rangle \cdot X.\lambda \langle \alpha_{X,2} \rangle \cdot X.$ var $\langle \alpha_{X,2} \rangle \cdot X$
- letrec E in S is renamed into letrec $\langle \alpha_{E,1} \rangle \cdot E$ in $\langle \alpha_S, LV(\alpha_{E,1}) \rangle \cdot S$

Tasks for symbolic α -renaming [Sab17, PPDP]:

- A sound algorithm to α -rename $s \in LRSX$ into $AR(s) \in LRSX\alpha$
- A sound matching algorithm to solve $(s, \nabla) \trianglelefteq (s', \Delta)$ where $s \in LRSX$, $s' \in LRSX\alpha$
- A sound **test for extended** *α***-equivalence** for constrained LRSX*α*-expressions
- Simplification of α -renamings
- **Refreshing** α -renamings after rewriting.

Automated Induction

Structure of the LRSX-Tool

Automated Induction: Ideas [RSSS12, IJCAR]

• Ignore the concrete expressions, only keep: kind of rule (SR or transformation) and rule-names, and answers as abstract constant

$$Ans \xrightarrow{T,gc} Ans$$

Automated Induction: Ideas [RSSS12, IJCAR]

• Ignore the concrete expressions, only keep: kind of rule (SR or transformation) and rule-names, and answers as abstract constant

$$SR,lbeta \bigvee_{\substack{I,gc \\ T,gc \\ T,gc \\ I}} \frac{T,gc}{SR,lbeta} \qquad Ans \xrightarrow{T,gc} Ans$$

• Diagrams represent string rewrite rules on strings consisting of elements (*SR*, *name*), (*T*, *name*), and *Answer*

 $(T,gc), (SR, lbeta) \rightarrow (SR, lbeta), (T,gc) \qquad (T,gc), Answer \rightarrow Answer$

Automated Induction: Ideas [RSSS12, IJCAR]

 Ignore the concrete expressions, only keep: kind of rule (SR or transformation) and rule-names, and answers as abstract constant

$$SR, lbeta \bigvee_{\substack{i = 1, \dots, i \neq j \\ i = 1, \dots, i \neq j}} \frac{T, gc}{i} \xrightarrow{i \neq SR, lbeta} Ans \xrightarrow{T, gc} Ans$$

• Diagrams represent string rewrite rules on strings consisting of elements (*SR*, *name*), (*T*, *name*), and *Answer*

 $(T,gc), (SR, lbeta) \rightarrow (SR, lbeta), (T,gc) \qquad \qquad (T,gc), Answer \rightarrow Answer$

- Termination of the string rewrite system implies successful induction $(T, gc), (SR, a_1), \dots, (SR, a_n), Answer \xrightarrow{*} (SR, a'_1), \dots, (SR, a'_m), Answer$
- We use term rewrite systems and innermost-termination and apply AProVE and certifier CeTA

Example

Obtained TRS:

Tgc(SRlbeta(x)) -> SRlbeta(Tgc(x))
Tgc(SRcp(x)) -> SRcp(Tgc(x))
Tgc(SRlll(x)) -> SRlll(Tgc(x))
Tgc(SRlll(x)) -> Tgc(x)
Tgc(Answer) -> Answer

Innermost termination is shown by AProVE and certified by CeTA

Transitive Closures are Required

Example:

Transitive Closures are Required

Example:

Transitive Closures are Required

Example:

Encoding of Transitive Closures

is encoded by:

```
Tgc(SRlbeta(x)) -> gen(k,x)
gen(s(k),x) -> SRlll(gen(k,x))
gen(s(k),x) -> SRlll(SRlbeta(Tgc(x)))
```

- free variable k on the right hand side to guess the number of steps
- AProVE & CeTA can handle such TRSs

Experiments

- LRSX Tool available from http://goethe.link/LRSXTOOL61
- computes diagrams and performs the automated induction

overlaps # joins computation time Calculus L_{need} (11 SR rules, 16 transformations, 2 answers)

\rightarrow	2242	5425	48 secs.
\leftarrow	3001	7273	116 secs.

Calculus L_{need}^{+seq} (17 SR rules, 18 transformations, 2 answers)

\rightarrow	4898	14729	149 secs.
\leftarrow	6437	18089	255 secs.

Calculus LR (76 SR rules, 43 transformations, 17 answers)

\rightarrow	87041	391264	~ 19 hours
\leftarrow	107333	429104	~ 16 hours

Conclusion

- Automation of the diagram method
- Quite expressive meta-language LRSX
- \bullet Algorithms for unification, matching, $\alpha\mbox{-renaming}$
- Encoding technique to apply termination provers for TRSs
- Experiments show that the automation works well for call-by-need calculi

Further work

Other applications

- Further calculi, for instance, process calculi with structural congruence
- Correctness of translations between calculi
- Proving improvements
- Other meta-languages
 - Nominal techniques to ease reasoning on α -renamings: in progress, e.g.
 - Nominal unification for a meta-language with letrec

[SSKLV16, LOPSTR]

• Nominal unification for a meta-language with context variables [SSS18, FSCD, to appear]

• . . .

Thank you!