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Introduction

the π-calculus is a core language for concurrent processes

is a message passing model

the control flow of π-programs is expressed by process
communication

introduced by R. Milner, J. Parrow & D. Walker, 1992

extends CCS (Calculus of Communicating Systems, R. Milner, 1980) by
mobility of processes
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Some Applications

The Spi-calculus and the applied π-calculus to verify
cryptographic protocols

(Abadi & Gordon 1997, Abadi & Fournet 2001)

π-calculus as a theoretical basis of business processes
(Smith & Fingar, 2002)

representation of biochemical processes using the stochastic
π-calculus (Priami, Regev, Silverman & Shapiro, 2001)

the join calculus is a core model for the distributed programming
language JoCaml (Laneve 1996, Fournet & Gonthier 2000)
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Parallel Composition

P Q

P ||||Q
“processes P and Q run concurrently”
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Links

P
x

x.P︸︷︷︸
receive

or x.P

“P is linked to channel named x”
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Communication

P Q
x

x.P |||| x.Q

→ P ||||Q

“P (sender) and Q (receiver)

“P sent a message to Q”

can communicate”
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Nondeterminism

P

Q

R

x

x.P |||| x.Q |||| x.R

P ||||Q |||| x.R

P |||| x.Q ||||R

→ P ||||Q
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Messages

P Q
x

m m

x.P |||| x.Q → P ||||Q
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Messages

P Q
x

m

m

x〈m〉.P |||| x.Q → P ||||Q

“P sends message m along x”
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Messages

P Q
x

m

m

x〈m〉.P |||| x(y).Q → P ||||Q

“P sends message m along x”
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Messages

P Q

x

m

m

x〈m〉.P |||| x(y).Q → P ||||Q[m/y]

“P sends message m along x”
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Approaches to Mobility

1. Processes move their location in the physical space of processes

P3

P1 P2

P3

P1

P2

2. Processes move their location in the virtual space of linked processes

P3

P1 P2
x

y z

P3

P1 P2
x

y z

3. Links move in the virtual space of linked processes
(approach of the π-calculus, includes the second approach)

P3

P1 P2
x

y z

P3

P1 P2
x

y z

P3

P1 P2
x

y z
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Mobility (2)

How to move links?

⇒ Send them as messages!

P Q
x

R
y

x(z).z(w).P ′︸ ︷︷ ︸
P

||||x〈y〉.Q′︸ ︷︷ ︸
Q

|||| y〈u′〉.R′︸ ︷︷ ︸
R

P ′′ Q′

R′′

y

(z(w).P ′)[z/y] ||||Q′ |||| y〈u′〉.R′
= y(w).P ′︸ ︷︷ ︸

P ′′

||||Q′ |||| y〈u′〉.R′︸ ︷︷ ︸
R′′
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Private Communication

νx.P
“channel x is private for P”

Example: νx.(x(y).P ||||x〈z〉.Q) ||||x〈z′〉.R

no communication between R and P allowed

equivalent to νx′.(x′(y).P ||||x′〈z〉.Q) ||||x〈z′〉.R
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Replication

P P P . . .

!P
“!P means P ||||P ||||P |||| . . .︸ ︷︷ ︸

infinitely many parallel copies of P

”
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Syntax of a minimalistic (synchronous) π-calculus

Syntax of calculus Π where x, y ∈ N is a countably-infinite set of names

P ::= π.P (action)
| P1 ||||P2 (parallel composition)
| !P (replication)
| 0 (silent process)
| νx.P (name restriction)

π ::= x(y) input
| x〈y〉 output

Binding scopes:

in νx.P name x is bound with scope P

in x(y).P name y is bound with scope P

Contexts C ∈ C: Process with a hole [·] at process position
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Structural Congruence

Structural Congruence ≡
Smallest congruence on processes satisfying the following axioms

P ≡ Q, if P and Q are α-equivalent
P1 |||| (P2 ||||P3) ≡ (P1 ||||P2) ||||P3

P1 ||||P2 ≡ P2 ||||P1

P ||||0 ≡ P
νz.νw.P ≡ νw.νz.P

νz.0 ≡ 0
νz.(P1 ||||P2) ≡ P1 |||| νz.P2, if z 6∈ fn(P1)

!P ≡ P |||| !P

Remark:

Decidability of P ≡ Q is unknown

Schmidt-Schauß, Rau, S. 2013: EXPSPACE-hardness
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Operational Semantics: Small-Step Reduction

Reduction rule for interaction:

x(y).P ||||x〈v〉.Q ia−→ P [v/y] ||||Q.

Reduction contexts D:

D ∈ D ::= [·] | D ||||P | P ||||D | νx.D

Standard reduction
sr−→:

P ≡ D[P ′], P ′
ia−→ Q′, D[Q′] ≡ Q, and D ∈ D
P

sr−→ Q

Notation:
sr,∗−−→ :=

⋃
i≥0

sr,i−−→ and
sr,+−−→ :=

⋃
i>0

sr,i−−→

P
sr,0−−→ P and P

sr,i−−→ Q iff ∃P ′: P sr−→ P ′ and P ′
sr,i−1−−−−→ Q.
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Examples

Encoding of internal choice ⊕

P ⊕Q := νx, y.(x〈y〉.P ||||x〈y〉.Q ||||x(z).0)

(x, y 6∈ (fn(P ) ∪ fn(Q)))

P ⊕Q ≡ νx, y.([x(z).0 ||||x〈y〉.P ] ||||x〈y〉.Q)
sr−→ νx, y.([P ||||0] ||||x〈y〉.Q)
≡ P |||| νx, y.(x〈y〉.Q)︸ ︷︷ ︸

“garbage”

Other reduction possibility:

P ⊕Q sr−→ Q |||| νx, y.(x〈y〉.P )︸ ︷︷ ︸
“garbage”
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Process Equivalence

equate processes if their “behavior” is indistinguishable

should be a congruence

a lot of approaches for process equivalence

Observed behavior: input and output capabilities

νX .(x(y).P1 ||||P2) with x 6∈ X has an input capability.

νX .(x〈y〉.P1 ||||P2) with x 6∈ X has an output capability.

two cases:

y 6∈ X : The emitted name is free
y ∈ X : The emitted name is bound
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A Hierarchy of Process Equivalences

full strong labelled bisimilarity

⊂

full (weak) labelled bisimilarity

⊆

barbed congruence

⊂

barbed should-testing

⊂

barbed may-testing coarse

fine
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Barbs

Barb

P �x iff P ≡ νX .(x(y).P ′ ||||P ′′) where x 6∈ X ,

P �x iff P ≡ νX .(x〈y〉.P ′ ||||P ′′) where x 6∈ X .

May-barb and Should-barb

For µ ∈ {x, x}:
P �µ (P may have a barb on x) iff ∃Q : P

sr,∗−−→ Q ∧Q �µ, and

P ��µ (P should have a barb on x) iff ∀Q : P
sr,∗−−→ Q =⇒ Q�µ.

Notations:

P �µ iff ¬(P ��µ)

P ��µ iff ¬(P �µ)
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Barbed Testing

For µ ∈ {x, x}, and ξ ∈ {�µ, ��µ,�µ, ��µ}
barbed may-testing preorder:

P vc,may Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C : C[P ]�µ =⇒ C[Q]�µ

barbed should-testing preorder:

P vc,should Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C : C[P ] ��µ =⇒ C[Q] ��µ

barbed testing preorder: vc := vc,may ∩ vc,should
barbed testing equivalences

vwc,may := vc,may ∩ (vc,may)−1

vwc,should := vc,should ∩ (vc,should)−1

vwc := (vc) ∩ (vc)−1
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Examples

Barbed testing equivalence is coarse:

(a(z).0︸ ︷︷ ︸
A

⊕ b(z).0︸ ︷︷ ︸
B

)⊕ c(z).0︸ ︷︷ ︸
C

vwc a(z).0︸ ︷︷ ︸
A

⊕(b(z).0︸ ︷︷ ︸
B

⊕ c(z).0︸ ︷︷ ︸
C

)

Barbed may-testing is too coarse:

a(z).0 vwc,may a(z).0⊕ 0

Barbed should-testing is finer:

a(z).0 6vwc,should a(z).0⊕ 0
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Alternative Definitions of Barbed Testing

Theorem (Should-Testing includes May-Testing)

vc,should ⊂ (vc,may)−1 and thus vwc = vwc,should.

Theorem

vc,should = vc,��x = vc,�� where

P vc,should Q := ∀x ∈ N , µ ∈ {x, x}, C ∈ C : C[P ] ��µ =⇒ C[Q] ��µ

P vc,��x Q := ∀C ∈ C : C[P ] ��x =⇒ C[Q] ��x

P vc,�� Q := ∀C ∈ C : (∃x : C[P ] ��x) =⇒ (∃x : C[Q] ��x)

(analogous for barbed may-testing)

Proofs:

(Fournet & Gonthier 2005) for the asynchronous π-calculus

for Π also included in (S. & Schmidt-Schauß 2014, submitted)
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Contextual Equivalence as Program Equivalence

Contextual Equivalence is a general notion of program
equivalence for a lot of (and quite different) program calculi.
Required ingredients:

expressions e

contexts C (expressions with a hole)

reduction relation →
predicate for successful termination

For any such calculus one can define

May-convergence: e ↓ iff ∃e : e
∗−→ e′ ∧ e′ is successful

Should-convergence: e ⇓ iff ∀e′ : e ∗−→ e′ =⇒ e′ ↓
for ξ ∈ {↓,⇓} : e1 ≤c,ξ e2 iff ∀C : C[e1]ξ =⇒ C[e2]ξ

Contextual preorder: ≤c := ≤c,↓ ∩ ≤c,⇓
Contextual equivalence: ∼c := ≤c ∩ (≤c)−1
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Advantages of Contextual Equivalence

contextual equivalence is a congruence by definition

contextual equivalence is usually the coarsest meaningful
program equivalence

having such a common notion of program equivalence makes
program calculi (easier) comparable.

For two calculi calc1, calc2:
Does a translation ψ : calc1 → calc2 exist, s.t.

ψ is adequate: ψ(e1) ∼c,calc2
ψ(e2) =⇒ e1 ∼c,calc1

e2
ψ is full-abstract: ψ(e1) ∼c,calc2 ψ(e2) ⇐⇒ e1 ∼c,calc1 e2

(see e.g. (Schmidt-Schauß, Niehren, Schwinghammer & S. 2008))
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Back to the π-calculus

(strong) bisimilarity, barbed testing:

instead of observing success, the input/output capabilities
are observed

other calculi do not have channel names, which makes
them hard to compare to Π

barbed testing is close to contextual equivalence, but:

P �x and P
sr−→ P ′ with ¬(P ′ �x) is possible:

(x(y).0 ||||x〈y〉.0)
sr−→ 0

hence �x is not a notion of successful termination.
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The π-calculus with Stop

Our approach (S. & Schmidt-Schauß 2014, submitted):

add a syntactic constant Stop to indicate success.

contextual equivalence based on the new notion of success

Stop can be seen as a new programming primitive:

a process can shutdown the whole program
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The π-calculus with Stop: ΠStop

P ::= π.P (action)
| P1 ||||P2 (parallel composition)
| !P (replication)
| 0 (silent process)
| νx.P (name restriction)
| Stop (success)

π ::= x(y) | x〈y〉

Further adaptions:

contexts may also include Stop

structural congruence: νx.Stop ≡ Stop

standard reduction
sr−→ unchanged

Successful process: A process P is successful iff P ≡ Stop ||||P ′

Lemma: P successful and P
sr−→ P ′ =⇒ P ′ successful.
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Contextual Equivalence in ΠStop

May-convergence: P ↓ iff ∃P : P
sr,∗−−→ P ′ ∧ P ′ is successful

Should-convergence: P ⇓ iff ∀P ′ : P sr,∗−−→ P ′ =⇒ P ′ ↓

Notation:

Must-Divergence: P ⇑ iff ¬(P ↓)
May-Divergence: P ↑ iff ¬P ⇓

Contextual Preorder & Equivalence

for ξ ∈ {↓,⇓} : P1 ≤c,ξ P2 iff ∀C : C[P1]ξ =⇒ C[P2]ξ

Contextual preorder: ≤c := ≤c,↓ ∩ ≤c,⇓
Contextual equivalence: ∼c := ≤c ∩ (≤c)−1
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Conservativity

Theorem

Let P,Q be Stop-free processes. Then P vwc Q iff P ∼c Q.

Consequences:

Contextual equivalence in ΠStop is compatible with existing
process equivalences in Π.

For Stop-free processes: ≈σb,strong ⊂ ≈σb ⊂ vwc = ∼c
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Proof Tools: Context Lemma

Contexts [·] ||||R and name substitutions are sufficient
to prove or disprove contextual equivalences, i.e.:

Context Lemma

For all processes P,Q:

P ≤c,↓ Q iff ∀σ,R: σ(P ) ||||R ↓ =⇒ σ(Q) ||||R ↓
P ≤c Q iff ∀σ,R :
(σ(P ) ||||R ↓ =⇒ σ(Q) ||||R ↓)∧(σ(P ) ||||R ⇓ =⇒ σ(Q) ||||R ⇓)
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Proof Tools: Action-Semantics

Labelled transitions: P
α−→ Q with α ∈ Act = {x〈y〉, x(y), νy.x(y)}:

Definition

Open input: If P ≡ νX .(x(y).P1 ||||P2) (with x 6∈ X ) then

P
x〈z〉−−→ νX .(P1[z/y] ||||P2) (for all z ∈ N )

Open output: If P ≡ νX .(x〈y〉.P1 ||||P2) with x, y 6∈ X , then

P
x(y)−−→ νX .(P1 ||||P2)

Bound output: If P ≡ νX , νy.(x〈y〉.P1 ||||P2) with x 6∈ X , then

P
νy.x(y)−−−−→ νX .(P1 ||||P2).
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Proof Tools: Similarity

May-similarity

A binary relation η is an applicative ↓-simulation iff for all (P,Q) ∈ η:

If P is successful, then Q↓.
If P

sr−→ P ′, then ∃Q′ with Q
sr,∗−−→ Q′ and (P ′, Q′) ∈ η.

If P is not successful, for α ∈ Act : P
α−→ P ′, then ∃Q′ with

Q
sr,∗−−→ α−→ Q′ and (P ′, Q′) ∈ η.

Applicative ↓-similarity -b,↓ is the largest applicative simulation.
Full applicative ↓-similarity -σb,↓: P -

σ
b,↓ Q iff ∀σ : σ(P ) -b,↓ σ(Q)

Theorem (Soundness)

-σb,↓ ⊂ ≤c,↓
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Proof Tools: Similarity (2)

May-Divergence Similarity

A binary relation η is an applicative ↑-simulation iff for all (P,Q) ∈ η
If P⇑, then Q↑.
If P

sr−→ P ′, then ∃Q′ with Q
sr,∗−−→ Q′ and (P ′, Q′) ∈ η.

If P is not must-divergent, then ∀α ∈ Act : If P
α−→ P ′ then ∃Q′ with

Q
sr,∗−−→ α−→ Q′ and (P ′, Q′) ∈ η.

Q -b,↓ P

Applicative ↑-similarity -b,↑ is the largest applicative ↑-simulation. Full
applicative ↑-similarity: P -σb,↑ Q iff ∀σ : σ(P ) -b,↑ σ(Q)
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Proof Tools: Similarity (3)

Theorem (Soundness)

(P -σb,↓ Q ∧Q -σb,↑ P ) =⇒ P ≤c Q

P -σb,↑ Q =⇒ Q -σb,↓ P

(P -σb,↑ Q ∧ Q -σb,↑ P ) =⇒ P ∼c Q

Note that -σb,↑ is fine-grained, e.g.
for A := a(x).0, B := b(x).0, C := b(x).0:

(A⊕B)⊕ C 6-σb,↑ A⊕ (B ⊕ C)

although
(A⊕B)⊕ C ∼c A⊕ (B ⊕ C)

Open problem: find a coarser sound similarity for ↑
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Tools at Work: A Correct Program Transformation

Correctness of Deterministic Interaction

For all processes P,Q the following equation holds:

νx.(x(y).P ||||x〈z〉.Q)) ∼c νx.(P [z/y] ||||Q)

Proof: Let

S = {(σ(νx.(x(y).P ||||x〈z〉.Q)), σ(νx.(P [z/y] ||||Q)))
| for all x, y, z, P,Q, σ} ∪ ≡

S and S−1 are applicative ↑-simulations.
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Tools at Work: Some more laws

Theorem

For all processes P,Q the following equivalences hold:

1 !P ∼c ! !P .

2 !P |||| !P ∼c !P .

3 ! (P ||||Q) ∼c !P |||| !Q.

4 ! 0 ∼c 0.

5 !Stop ∼c Stop.

6 ! (P ||||Q) ∼c ! (P ||||Q) ||||P .

7 x(y).νz.P ∼c νz.x(y).P if z 6∈ {x, y}.
8 x〈y〉.νz.P ∼c νz.x〈y〉.P if z 6∈ {x, y}.

Proof: Si ∪-b,↑ and S−1i ∪-b,↑ are applicative ↑-simulations
where Si := {(R |||| li, R |||| ri) | for all R,P,Q}, and li, ri are the left
and right hand side of the ith equation.
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Analyzing the Contextual Ordering

Theorem

1 If P,Q are two successful processes, then P ∼c Q.

2 If P,Q are two processes with P↓, Q↓, then P ∼c,↓ Q.

3 There are may-convergent processes P,Q with P 6∼c Q.

4 Stop is the greatest process w.r.t. ≤c.
5 0 is the smallest process w.r.t. ≤c,↓.
6 There is no smallest process w.r.t. ≤c.
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More Results

“Observing should-convergence is sufficient:”

Theorem

≤c,⇓ = ≤c 6= ≤c,↓.

“Stop is not expressible in Π”:

Theorem

There is no surjective translation ψ : ΠStop → Π s.t. for all P,Q:
P ≤c Q =⇒ ψ(P ) vc ψ(Q).
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Conclusion

Notion of contextual equivalence with may- and should
convergence can also be used for the π-calculus

Requires to add Stop

Extension is conservative w.r.t. barbed testing equivalence

Stop as a programming primitive
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Further work

Encodings of the π-calculus into other program calculi with
contextual equivalence

Extensions of the π-calculus with Stop: recursion, guarded
sums, matching prefixes, etc.

Coarser applicative ↑-simulation

David Sabel The π-calculus with Stop 41/41


	The -calculus
	Process Equivalence in the -calculus
	The -calculus with Stop

