

1

The π-calculus with Stop

David Sabel

Goethe-Universität, Frankfurt am Main

January 21, 2014

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Overview

1 The π-calculus

2 Process Equivalence in the π-calculus

3 The π-calculus with Stop

David Sabel The π-calculus with Stop 2/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Introduction

the π-calculus is a core language for concurrent processes

is a message passing model

the control flow of π-programs is expressed by process
communication

introduced by R. Milner, J. Parrow & D. Walker, 1992

extends CCS (Calculus of Communicating Systems, R. Milner, 1980) by
mobility of processes

David Sabel The π-calculus with Stop 3/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Some Applications

The Spi-calculus and the applied π-calculus to verify
cryptographic protocols

(Abadi & Gordon 1997, Abadi & Fournet 2001)

π-calculus as a theoretical basis of business processes
(Smith & Fingar, 2002)

representation of biochemical processes using the stochastic
π-calculus (Priami, Regev, Silverman & Shapiro, 2001)

the join calculus is a core model for the distributed programming
language JoCaml (Laneve 1996, Fournet & Gonthier 2000)

David Sabel The π-calculus with Stop 4/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Parallel Composition

P Q

P ||||Q
“processes P and Q run concurrently”

David Sabel The π-calculus with Stop 5/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Links

P
x

x.P︸︷︷︸
receive

or x.P

“P is linked to channel named x”

David Sabel The π-calculus with Stop 6/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Links

P
x

x.P︸︷︷︸
receive

or x.P︸︷︷︸
send

“P is linked to channel named x”

David Sabel The π-calculus with Stop 6/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Communication

P Q
x

x.P |||| x.Q

→ P ||||Q

“P (sender) and Q (receiver)

“P sent a message to Q”

can communicate”

David Sabel The π-calculus with Stop 7/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Communication

P Q

x

x.P |||| x.Q → P ||||Q

“P (sender) and Q (receiver) “P sent a message to Q”
can communicate”

David Sabel The π-calculus with Stop 7/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Nondeterminism

P

Q

R

x

x.P |||| x.Q |||| x.R

P ||||Q |||| x.R

P |||| x.Q ||||R

→ P ||||Q

David Sabel The π-calculus with Stop 8/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Nondeterminism

P

Q

R

x

x.P |||| x.Q |||| x.R

P ||||Q |||| x.R

P |||| x.Q ||||R

→ P ||||Q
David Sabel The π-calculus with Stop 8/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Nondeterminism

P

Q

R

x

x

x.P |||| x.Q |||| x.R

P ||||Q |||| x.R

P |||| x.Q ||||R

→ P ||||Q

David Sabel The π-calculus with Stop 8/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Nondeterminism

P

Q

R

x

x.P |||| x.Q |||| x.R

P ||||Q |||| x.R

P |||| x.Q ||||R

→ P ||||Q

David Sabel The π-calculus with Stop 8/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Nondeterminism

P

Q

R

x

x.P |||| x.Q |||| x.R

P ||||Q |||| x.R

P |||| x.Q ||||R

→ P ||||Q

David Sabel The π-calculus with Stop 8/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Nondeterminism

P

Q

R

x

x

x.P |||| x.Q |||| x.R

P ||||Q |||| x.R

P |||| x.Q ||||R

→ P ||||Q

David Sabel The π-calculus with Stop 8/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Messages

P Q
x

m m

x.P |||| x.Q → P ||||Q

David Sabel The π-calculus with Stop 9/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Messages

P Q
x

m

m

x〈m〉.P |||| x.Q → P ||||Q

“P sends message m along x”

David Sabel The π-calculus with Stop 9/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Messages

P Q
x

m

m

x〈m〉.P |||| x(y).Q → P ||||Q

“P sends message m along x”

David Sabel The π-calculus with Stop 9/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Messages

P Q

x

m

m

x〈m〉.P |||| x(y).Q → P ||||Q[m/y]

“P sends message m along x”

David Sabel The π-calculus with Stop 9/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Approaches to Mobility

1. Processes move their location in the physical space of processes

P3

P1 P2

P3

P1

P2

2. Processes move their location in the virtual space of linked processes

P3

P1 P2
x

y z

P3

P1 P2
x

y z

3. Links move in the virtual space of linked processes
(approach of the π-calculus, includes the second approach)

P3

P1 P2
x

y z

P3

P1 P2
x

y z

P3

P1 P2
x

y z

David Sabel The π-calculus with Stop 10/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Approaches to Mobility

1. Processes move their location in the physical space of processes

P3

P1 P2

P3

P1

P2

2. Processes move their location in the virtual space of linked processes

P3

P1 P2
x

y z

P3

P1 P2
x

y z

3. Links move in the virtual space of linked processes
(approach of the π-calculus, includes the second approach)

P3

P1 P2
x

y z

P3

P1 P2
x

y z

P3

P1 P2
x

y z

David Sabel The π-calculus with Stop 10/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Approaches to Mobility

1. Processes move their location in the physical space of processes

P3

P1 P2

P3

P1

P2

2. Processes move their location in the virtual space of linked processes

P3

P1 P2
x

y z

P3

P1 P2
x

y z

3. Links move in the virtual space of linked processes
(approach of the π-calculus, includes the second approach)

P3

P1 P2
x

y z

P3

P1 P2
x

y z

P3

P1 P2
x

y z

David Sabel The π-calculus with Stop 10/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Mobility (2)

How to move links?

⇒ Send them as messages!

P Q
x

R
y

x(z).z(w).P ′︸ ︷︷ ︸
P

||||x〈y〉.Q′︸ ︷︷ ︸
Q

|||| y〈u′〉.R′︸ ︷︷ ︸
R

P ′′ Q′

R′′

y

(z(w).P ′)[z/y] ||||Q′ |||| y〈u′〉.R′
= y(w).P ′︸ ︷︷ ︸

P ′′

||||Q′ |||| y〈u′〉.R′︸ ︷︷ ︸
R′′

David Sabel The π-calculus with Stop 11/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Mobility (2)

How to move links?

⇒ Send them as messages!

P Q
x

R
y

x(z).z(w).P ′︸ ︷︷ ︸
P

||||x〈y〉.Q′︸ ︷︷ ︸
Q

|||| y〈u′〉.R′︸ ︷︷ ︸
R

P ′′ Q′

R′′

y

(z(w).P ′)[z/y] ||||Q′ |||| y〈u′〉.R′
= y(w).P ′︸ ︷︷ ︸

P ′′

||||Q′ |||| y〈u′〉.R′︸ ︷︷ ︸
R′′

David Sabel The π-calculus with Stop 11/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Private Communication

νx.P
“channel x is private for P”

Example: νx.(x(y).P ||||x〈z〉.Q) ||||x〈z′〉.R

no communication between R and P allowed

equivalent to νx′.(x′(y).P ||||x′〈z〉.Q) ||||x〈z′〉.R

David Sabel The π-calculus with Stop 12/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Replication

P P P . . .

!P
“!P means P ||||P ||||P |||| . . .︸ ︷︷ ︸

infinitely many parallel copies of P

”

David Sabel The π-calculus with Stop 13/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Syntax of a minimalistic (synchronous) π-calculus

Syntax of calculus Π where x, y ∈ N is a countably-infinite set of names

P ::= π.P (action)
| P1 ||||P2 (parallel composition)
| !P (replication)
| 0 (silent process)
| νx.P (name restriction)

π ::= x(y) input
| x〈y〉 output

Binding scopes:

in νx.P name x is bound with scope P

in x(y).P name y is bound with scope P

Contexts C ∈ C: Process with a hole [·] at process position

David Sabel The π-calculus with Stop 14/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Structural Congruence

Structural Congruence ≡
Smallest congruence on processes satisfying the following axioms

P ≡ Q, if P and Q are α-equivalent
P1 |||| (P2 ||||P3) ≡ (P1 ||||P2) ||||P3

P1 ||||P2 ≡ P2 ||||P1

P ||||0 ≡ P
νz.νw.P ≡ νw.νz.P

νz.0 ≡ 0
νz.(P1 ||||P2) ≡ P1 |||| νz.P2, if z 6∈ fn(P1)

!P ≡ P |||| !P

Remark:

Decidability of P ≡ Q is unknown

Schmidt-Schauß, Rau, S. 2013: EXPSPACE-hardness

David Sabel The π-calculus with Stop 15/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Operational Semantics: Small-Step Reduction

Reduction rule for interaction:

x(y).P ||||x〈v〉.Q ia−→ P [v/y] ||||Q.

Reduction contexts D:

D ∈ D ::= [·] | D ||||P | P ||||D | νx.D

Standard reduction
sr−→:

P ≡ D[P ′], P ′
ia−→ Q′, D[Q′] ≡ Q, and D ∈ D
P

sr−→ Q

Notation:
sr,∗−−→ :=

⋃
i≥0

sr,i−−→ and
sr,+−−→ :=

⋃
i>0

sr,i−−→

P
sr,0−−→ P and P

sr,i−−→ Q iff ∃P ′: P sr−→ P ′ and P ′
sr,i−1−−−−→ Q.

David Sabel The π-calculus with Stop 16/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Examples

Encoding of internal choice ⊕

P ⊕Q := νx, y.(x〈y〉.P ||||x〈y〉.Q ||||x(z).0)

(x, y 6∈ (fn(P) ∪ fn(Q)))

P ⊕Q ≡ νx, y.([x(z).0 ||||x〈y〉.P] ||||x〈y〉.Q)
sr−→ νx, y.([P ||||0] ||||x〈y〉.Q)
≡ P |||| νx, y.(x〈y〉.Q)︸ ︷︷ ︸

“garbage”

Other reduction possibility:

P ⊕Q sr−→ Q |||| νx, y.(x〈y〉.P)︸ ︷︷ ︸
“garbage”

David Sabel The π-calculus with Stop 17/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Process Equivalence

equate processes if their “behavior” is indistinguishable

should be a congruence

a lot of approaches for process equivalence

Observed behavior: input and output capabilities

νX .(x(y).P1 ||||P2) with x 6∈ X has an input capability.

νX .(x〈y〉.P1 ||||P2) with x 6∈ X has an output capability.

two cases:

y 6∈ X : The emitted name is free
y ∈ X : The emitted name is bound

David Sabel The π-calculus with Stop 18/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

A Hierarchy of Process Equivalences

full strong labelled bisimilarity

⊂

full (weak) labelled bisimilarity

⊆

barbed congruence

⊂

barbed should-testing

⊂

barbed may-testing coarse

fine

David Sabel The π-calculus with Stop 19/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Barbs

Barb

P �x iff P ≡ νX .(x(y).P ′ ||||P ′′) where x 6∈ X ,

P �x iff P ≡ νX .(x〈y〉.P ′ ||||P ′′) where x 6∈ X .

May-barb and Should-barb

For µ ∈ {x, x}:
P �µ (P may have a barb on x) iff ∃Q : P

sr,∗−−→ Q ∧Q �µ, and

P ��µ (P should have a barb on x) iff ∀Q : P
sr,∗−−→ Q =⇒ Q�µ.

Notations:

P �µ iff ¬(P ��µ)

P ��µ iff ¬(P �µ)

David Sabel The π-calculus with Stop 20/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Barbed Testing

For µ ∈ {x, x}, and ξ ∈ {�µ, ��µ,�µ, ��µ}
barbed may-testing preorder:

P vc,may Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C : C[P]�µ =⇒ C[Q]�µ

barbed should-testing preorder:

P vc,should Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C : C[P] ��µ =⇒ C[Q] ��µ

barbed testing preorder: vc := vc,may ∩ vc,should
barbed testing equivalences

vwc,may := vc,may ∩ (vc,may)−1

vwc,should := vc,should ∩ (vc,should)−1

vwc := (vc) ∩ (vc)−1

David Sabel The π-calculus with Stop 21/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Examples

Barbed testing equivalence is coarse:

(a(z).0︸ ︷︷ ︸
A

⊕ b(z).0︸ ︷︷ ︸
B

)⊕ c(z).0︸ ︷︷ ︸
C

vwc a(z).0︸ ︷︷ ︸
A

⊕(b(z).0︸ ︷︷ ︸
B

⊕ c(z).0︸ ︷︷ ︸
C

)

Barbed may-testing is too coarse:

a(z).0 vwc,may a(z).0⊕ 0

Barbed should-testing is finer:

a(z).0 6vwc,should a(z).0⊕ 0

David Sabel The π-calculus with Stop 22/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Alternative Definitions of Barbed Testing

Theorem (Should-Testing includes May-Testing)

vc,should ⊂ (vc,may)−1 and thus vwc = vwc,should.

Theorem

vc,should = vc,��x = vc,�� where

P vc,should Q := ∀x ∈ N , µ ∈ {x, x}, C ∈ C : C[P] ��µ =⇒ C[Q] ��µ

P vc,��x Q := ∀C ∈ C : C[P] ��x =⇒ C[Q] ��x

P vc,�� Q := ∀C ∈ C : (∃x : C[P] ��x) =⇒ (∃x : C[Q] ��x)

(analogous for barbed may-testing)

Proofs:

(Fournet & Gonthier 2005) for the asynchronous π-calculus

for Π also included in (S. & Schmidt-Schauß 2014, submitted)
David Sabel The π-calculus with Stop 23/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Contextual Equivalence as Program Equivalence

Contextual Equivalence is a general notion of program
equivalence for a lot of (and quite different) program calculi.
Required ingredients:

expressions e

contexts C (expressions with a hole)

reduction relation →
predicate for successful termination

For any such calculus one can define

May-convergence: e ↓ iff ∃e : e
∗−→ e′ ∧ e′ is successful

Should-convergence: e ⇓ iff ∀e′ : e ∗−→ e′ =⇒ e′ ↓
for ξ ∈ {↓,⇓} : e1 ≤c,ξ e2 iff ∀C : C[e1]ξ =⇒ C[e2]ξ

Contextual preorder: ≤c := ≤c,↓ ∩ ≤c,⇓
Contextual equivalence: ∼c := ≤c ∩ (≤c)−1

David Sabel The π-calculus with Stop 24/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Advantages of Contextual Equivalence

contextual equivalence is a congruence by definition

contextual equivalence is usually the coarsest meaningful
program equivalence

having such a common notion of program equivalence makes
program calculi (easier) comparable.

For two calculi calc1, calc2:
Does a translation ψ : calc1 → calc2 exist, s.t.

ψ is adequate: ψ(e1) ∼c,calc2
ψ(e2) =⇒ e1 ∼c,calc1

e2
ψ is full-abstract: ψ(e1) ∼c,calc2 ψ(e2) ⇐⇒ e1 ∼c,calc1 e2

(see e.g. (Schmidt-Schauß, Niehren, Schwinghammer & S. 2008))

David Sabel The π-calculus with Stop 25/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Back to the π-calculus

(strong) bisimilarity, barbed testing:

instead of observing success, the input/output capabilities
are observed

other calculi do not have channel names, which makes
them hard to compare to Π

barbed testing is close to contextual equivalence, but:

P �x and P
sr−→ P ′ with ¬(P ′ �x) is possible:

(x(y).0 ||||x〈y〉.0)
sr−→ 0

hence �x is not a notion of successful termination.

David Sabel The π-calculus with Stop 26/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

The π-calculus with Stop

Our approach (S. & Schmidt-Schauß 2014, submitted):

add a syntactic constant Stop to indicate success.

contextual equivalence based on the new notion of success

Stop can be seen as a new programming primitive:

a process can shutdown the whole program

David Sabel The π-calculus with Stop 27/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

The π-calculus with Stop: ΠStop

P ::= π.P (action)
| P1 ||||P2 (parallel composition)
| !P (replication)
| 0 (silent process)
| νx.P (name restriction)
| Stop (success)

π ::= x(y) | x〈y〉

Further adaptions:

contexts may also include Stop

structural congruence: νx.Stop ≡ Stop

standard reduction
sr−→ unchanged

Successful process: A process P is successful iff P ≡ Stop ||||P ′

Lemma: P successful and P
sr−→ P ′ =⇒ P ′ successful.

David Sabel The π-calculus with Stop 28/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Contextual Equivalence in ΠStop

May-convergence: P ↓ iff ∃P : P
sr,∗−−→ P ′ ∧ P ′ is successful

Should-convergence: P ⇓ iff ∀P ′ : P sr,∗−−→ P ′ =⇒ P ′ ↓

Notation:

Must-Divergence: P ⇑ iff ¬(P ↓)
May-Divergence: P ↑ iff ¬P ⇓

Contextual Preorder & Equivalence

for ξ ∈ {↓,⇓} : P1 ≤c,ξ P2 iff ∀C : C[P1]ξ =⇒ C[P2]ξ

Contextual preorder: ≤c := ≤c,↓ ∩ ≤c,⇓
Contextual equivalence: ∼c := ≤c ∩ (≤c)−1

David Sabel The π-calculus with Stop 29/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Conservativity

Theorem

Let P,Q be Stop-free processes. Then P vwc Q iff P ∼c Q.

Consequences:

Contextual equivalence in ΠStop is compatible with existing
process equivalences in Π.

For Stop-free processes: ≈σb,strong ⊂ ≈σb ⊂ vwc = ∼c

David Sabel The π-calculus with Stop 30/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Proof Tools: Context Lemma

Contexts [·] ||||R and name substitutions are sufficient
to prove or disprove contextual equivalences, i.e.:

Context Lemma

For all processes P,Q:

P ≤c,↓ Q iff ∀σ,R: σ(P) ||||R ↓ =⇒ σ(Q) ||||R ↓
P ≤c Q iff ∀σ,R :
(σ(P) ||||R ↓ =⇒ σ(Q) ||||R ↓)∧(σ(P) ||||R ⇓ =⇒ σ(Q) ||||R ⇓)

David Sabel The π-calculus with Stop 31/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Proof Tools: Action-Semantics

Labelled transitions: P
α−→ Q with α ∈ Act = {x〈y〉, x(y), νy.x(y)}:

Definition

Open input: If P ≡ νX .(x(y).P1 ||||P2) (with x 6∈ X) then

P
x〈z〉−−→ νX .(P1[z/y] ||||P2) (for all z ∈ N)

Open output: If P ≡ νX .(x〈y〉.P1 ||||P2) with x, y 6∈ X , then

P
x(y)−−→ νX .(P1 ||||P2)

Bound output: If P ≡ νX , νy.(x〈y〉.P1 ||||P2) with x 6∈ X , then

P
νy.x(y)−−−−→ νX .(P1 ||||P2).

David Sabel The π-calculus with Stop 32/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Proof Tools: Similarity

May-similarity

A binary relation η is an applicative ↓-simulation iff for all (P,Q) ∈ η:

If P is successful, then Q↓.
If P

sr−→ P ′, then ∃Q′ with Q
sr,∗−−→ Q′ and (P ′, Q′) ∈ η.

If P is not successful, for α ∈ Act : P
α−→ P ′, then ∃Q′ with

Q
sr,∗−−→ α−→ Q′ and (P ′, Q′) ∈ η.

Applicative ↓-similarity -b,↓ is the largest applicative simulation.
Full applicative ↓-similarity -σb,↓: P -

σ
b,↓ Q iff ∀σ : σ(P) -b,↓ σ(Q)

Theorem (Soundness)

-σb,↓ ⊂ ≤c,↓

David Sabel The π-calculus with Stop 33/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Proof Tools: Similarity (2)

May-Divergence Similarity

A binary relation η is an applicative ↑-simulation iff for all (P,Q) ∈ η
If P⇑, then Q↑.
If P

sr−→ P ′, then ∃Q′ with Q
sr,∗−−→ Q′ and (P ′, Q′) ∈ η.

If P is not must-divergent, then ∀α ∈ Act : If P
α−→ P ′ then ∃Q′ with

Q
sr,∗−−→ α−→ Q′ and (P ′, Q′) ∈ η.

Q -b,↓ P

Applicative ↑-similarity -b,↑ is the largest applicative ↑-simulation. Full
applicative ↑-similarity: P -σb,↑ Q iff ∀σ : σ(P) -b,↑ σ(Q)

David Sabel The π-calculus with Stop 34/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Proof Tools: Similarity (3)

Theorem (Soundness)

(P -σb,↓ Q ∧Q -σb,↑ P) =⇒ P ≤c Q

P -σb,↑ Q =⇒ Q -σb,↓ P

(P -σb,↑ Q ∧ Q -σb,↑ P) =⇒ P ∼c Q

Note that -σb,↑ is fine-grained, e.g.
for A := a(x).0, B := b(x).0, C := b(x).0:

(A⊕B)⊕ C 6-σb,↑ A⊕ (B ⊕ C)

although
(A⊕B)⊕ C ∼c A⊕ (B ⊕ C)

Open problem: find a coarser sound similarity for ↑

David Sabel The π-calculus with Stop 35/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Tools at Work: A Correct Program Transformation

Correctness of Deterministic Interaction

For all processes P,Q the following equation holds:

νx.(x(y).P ||||x〈z〉.Q)) ∼c νx.(P [z/y] ||||Q)

Proof: Let

S = {(σ(νx.(x(y).P ||||x〈z〉.Q)), σ(νx.(P [z/y] ||||Q)))
| for all x, y, z, P,Q, σ} ∪ ≡

S and S−1 are applicative ↑-simulations.

David Sabel The π-calculus with Stop 36/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Tools at Work: Some more laws

Theorem

For all processes P,Q the following equivalences hold:

1 !P ∼c ! !P .

2 !P |||| !P ∼c !P .

3 ! (P ||||Q) ∼c !P |||| !Q.

4 ! 0 ∼c 0.

5 !Stop ∼c Stop.

6 ! (P ||||Q) ∼c ! (P ||||Q) ||||P .

7 x(y).νz.P ∼c νz.x(y).P if z 6∈ {x, y}.
8 x〈y〉.νz.P ∼c νz.x〈y〉.P if z 6∈ {x, y}.

Proof: Si ∪-b,↑ and S−1i ∪-b,↑ are applicative ↑-simulations
where Si := {(R |||| li, R |||| ri) | for all R,P,Q}, and li, ri are the left
and right hand side of the ith equation.

David Sabel The π-calculus with Stop 37/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Analyzing the Contextual Ordering

Theorem

1 If P,Q are two successful processes, then P ∼c Q.

2 If P,Q are two processes with P↓, Q↓, then P ∼c,↓ Q.

3 There are may-convergent processes P,Q with P 6∼c Q.

4 Stop is the greatest process w.r.t. ≤c.
5 0 is the smallest process w.r.t. ≤c,↓.
6 There is no smallest process w.r.t. ≤c.

David Sabel The π-calculus with Stop 38/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

More Results

“Observing should-convergence is sufficient:”

Theorem

≤c,⇓ = ≤c 6= ≤c,↓.

“Stop is not expressible in Π”:

Theorem

There is no surjective translation ψ : ΠStop → Π s.t. for all P,Q:
P ≤c Q =⇒ ψ(P) vc ψ(Q).

David Sabel The π-calculus with Stop 39/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Conclusion

Notion of contextual equivalence with may- and should
convergence can also be used for the π-calculus

Requires to add Stop

Extension is conservative w.r.t. barbed testing equivalence

Stop as a programming primitive

David Sabel The π-calculus with Stop 40/41

The π-calculus Process Equivalence in the π-calculus The π-calculus with Stop

Further work

Encodings of the π-calculus into other program calculi with
contextual equivalence

Extensions of the π-calculus with Stop: recursion, guarded
sums, matching prefixes, etc.

Coarser applicative ↑-simulation

David Sabel The π-calculus with Stop 41/41

	The -calculus
	Process Equivalence in the -calculus
	The -calculus with Stop

