Algorithms for Extended Alpha-Equivalence and Complexity

Manfred Schmidt-Schauß, Conrad Rau, David Sabel
Goethe-University, Frankfurt, Germany

RTA 2013, Eindhoven, The Netherlands

Reasoning, deduction, rewriting, program transformation ... requires to identify expressions

Functional core languages have (recursive) bindings, e.g.

```
letrec
    map \(=\lambda f, x s\). case \(x s\) of \(\{[]->[] ;(y: y s) \rightarrow(f y):(\operatorname{map} f y s)\} ;\)
    square \(=\lambda x . x * x\);
    myList \(=[1,2,3]\)
in map square myList
```

- These bindings are sets, i.e. they are commutable
- Identify expressions upto extended α-equivalence: α-renaming and commutation of bindings

Questions

- What is the complexity of deciding extended α-equivalence?
- Is there a difference for languages with non-recursive let?
- Find efficient algorithms for special cases.
- Complexity of extended α-equivalence in process calculi?

Extended α-Equivalence for let-languages

Abstract language CH with recursive let, where $c \in \Sigma$

$$
\begin{aligned}
s_{i} \in \mathcal{L}_{\mathrm{CH}}::= & =x\left|c\left(s_{1}, \ldots, s_{\mathrm{ar}(c)}\right)\right| \lambda x . s \\
& \mid \text { letrec } x_{1}=s_{1} ; \ldots ; x_{n}=s_{n} \text { in } s
\end{aligned}
$$

Extended α-Equivalence $\simeq_{\alpha, \mathrm{CH}}$ in CH :

$$
s \simeq_{\alpha, \mathrm{CH}} t \text { iff } s \stackrel{\alpha \vee \text { comm }, *}{\longleftrightarrow} t \text { where }
$$

- $s \xrightarrow{\alpha} t$ is α-renaming
- C letrec $\ldots ; x_{i}=s_{i} ; \ldots, x_{j}=s_{j} ; \ldots$ in $\left.s\right]$ $\xrightarrow{\text { comm }} C\left[\right.$ letrec $\ldots ; x_{j}=s_{j} ; \ldots ; x_{i}=s_{i} ; \ldots$ in $\left.s\right]$

CHNR: Variant of CH with non-recursive let instead of letrec

Graph Isomorphism

Graph Isomorphism

Undirected graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic iff there exists a bijection $\phi: V_{1} \rightarrow V_{2}$ such that $(v, w) \in E_{1} \Longleftrightarrow(\phi(v), \phi(w)) \in E_{2}$

Graph Isomorphism Problem (GI)

Graph-isomorphism (GI) is the following problem: Given two finite (unlabelled, undirected) graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, are G_{1} and G_{2} isomorphic?

- $\mathbf{P} \subseteq \mathbf{G I} \subseteq \mathbf{N P}$
- GI is neither known to be in \mathbf{P} nor NP-hard
- A lot of other isomorphism problems on labelled / directed graphs are GI-complete (see e.g. Booth \& Colboum' 79)

Theorem

Deciding $\simeq_{\alpha, \mathrm{CH}}$ is GI-hard.
Proof: Polytime reduction of the Digraph-Isomorphism-Problem:
Digraph $G=(V, E)$ is encoded as:

$$
\operatorname{enc}(G)=\operatorname{letrec} E n v_{V}, E n v_{E} \text { in } x
$$

such that

- $E n v_{V}=\bigcup_{v_{i} \in V}\left\{v_{i}=a\right\}$ where $a \in \Sigma$
- $E n v_{E}=\bigcup_{\left(v_{i}, v_{j}\right) \in E}\left\{x_{i, j}=c\left(v_{i}, v_{j}\right)\right\}$ where $c \in \Sigma$

Verify: G_{1}, G_{2} are isomorphic $\Longleftrightarrow \operatorname{enc}\left(G_{1}\right) \simeq_{\alpha, \mathrm{CH}} \operatorname{enc}\left(G_{2}\right)$

Example

letrec $u_{1}=a ; u_{2}=a ; u_{3}=a$;

$$
\begin{aligned}
& x_{1,3}=c\left(u_{1}, u_{3}\right) ; \\
& x_{3,2}=c\left(u_{3}, u_{2}\right) ; \\
& x_{2,2}=c\left(u_{2}, u_{2}\right) ; \\
& x_{2,1}=c\left(u_{2}, u_{1}\right) ; \\
& x_{1,2}=c\left(u_{1}, u_{2}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $u_{3}=a ; u_{1}=a ; u_{2}=a ;$

$$
\begin{aligned}
& x_{3,2}=c\left(u_{3}, u_{2}\right) ; \\
& x_{2,2}=c\left(u_{2}, u_{2}\right) ; \\
& x_{2,1}=c\left(u_{2}, u_{1}\right) ; \\
& x_{1,2}=c\left(u_{1}, u_{2}\right) ; \\
& x_{1,3}=c\left(u_{1}, u_{3}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $u_{3}=a ; u_{1}=a ; u_{2}=a$;

$$
\begin{aligned}
& x_{1,3}=c\left(u_{3}, u_{2}\right) ; \\
& x_{3,3}=c\left(u_{2}, u_{2}\right) ; \\
& x_{3,2}=c\left(u_{2}, u_{1}\right) ; \\
& x_{2,3}=c\left(u_{1}, u_{2}\right) ; \\
& x_{2,1}=c\left(u_{1}, u_{3}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $u_{3}=a ; u_{1}=a ; u_{2}=a ;$

$$
\begin{aligned}
& x_{1,3}=c\left(u_{3}, u_{2}\right) ; \\
& x_{3,3}=c\left(u_{2}, u_{2}\right) ; \\
& x_{3,2}=c\left(u_{2}, u_{1}\right) ; \\
& x_{2,3}=c\left(u_{1}, u_{2}\right) ; \\
& x_{2,1}=c\left(u_{1}, u_{3}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $u_{3}=a ; v_{2}=a ; u_{2}=a$;

$$
\begin{aligned}
& x_{1,3}=c\left(u_{3}, u_{2}\right) ; \\
& x_{3,3}=c\left(u_{2}, u_{2}\right) ; \\
& x_{3,2}=c\left(u_{2}, v_{2}\right) ; \\
& x_{2,3}=c\left(v_{2}, u_{2}\right) ; \\
& x_{2,1}=c\left(v_{2}, u_{3}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $u_{3}=a ; v_{2}=a ; u_{2}=a ;$

$$
\begin{aligned}
& x_{1,3}=c\left(u_{3}, u_{2}\right) ; \\
& x_{3,3}=c\left(u_{2}, u_{2}\right) ; \\
& x_{3,2}=c\left(u_{2}, v_{2}\right) ; \\
& x_{2,3}=c\left(v_{2}, u_{2}\right) ; \\
& x_{2,1}=c\left(v_{2}, u_{3}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $u_{3}=a ; v_{2}=a ; v_{3}=a$;

$$
\begin{aligned}
& x_{1,3}=c\left(u_{3}, v_{3}\right) ; \\
& x_{3,3}=c\left(v_{3}, v_{3}\right) ; \\
& x_{3,2}=c\left(v_{3}, v_{2}\right) ; \\
& x_{2,3}=c\left(v_{2}, v_{3}\right) ; \\
& x_{2,1}=c\left(v_{2}, u_{3}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $u_{3}=a ; v_{2}=a ; v_{3}=a ;$

$$
\begin{aligned}
& x_{1,3}=c\left(u_{3}, v_{3}\right) ; \\
& x_{3,3}=c\left(v_{3}, v_{3}\right) ; \\
& x_{3,2}=c\left(v_{3}, v_{2}\right) ; \\
& x_{2,3}=c\left(v_{2}, v_{3}\right) ; \\
& x_{2,1}=c\left(v_{2}, u_{3}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
\begin{aligned}
& x_{1,3}=c\left(v_{1}, v_{3}\right) ; \\
& x_{3,3}=c\left(v_{3}, v_{3}\right) ; \\
& x_{3,2}=c\left(v_{3}, v_{2}\right) ; \\
& x_{2,3}=c\left(v_{2}, v_{3}\right) ; \\
& x_{2,1}=c\left(v_{2}, v_{1}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Example

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
\begin{aligned}
& x_{1,3}=c\left(v_{1}, v_{3}\right) ; \\
& x_{3,3}=c\left(v_{3}, v_{3}\right) ; \\
& x_{3,2}=c\left(v_{3}, v_{2}\right) ; \\
& x_{2,3}=c\left(v_{2}, v_{3}\right) ; \\
& x_{2,1}=c\left(v_{2}, v_{1}\right) ;
\end{aligned}
$$

in x

letrec $v_{1}=a ; v_{2}=a ; v_{3}=a$;

$$
x_{1,3}=c\left(v_{1}, v_{3}\right) ;
$$

$$
x_{3,3}=c\left(v_{3}, v_{3}\right) ;
$$

$$
x_{3,2}=c\left(v_{3}, v_{2}\right) ;
$$

$$
x_{2,3}=c\left(v_{2}, v_{3}\right) ;
$$

$$
x_{2,1}=c\left(v_{2}, v_{1}\right)
$$

in x

Isomorphism: $\left\{u_{1} \mapsto v_{2}, u_{2} \mapsto v_{3}, u_{3} \mapsto v_{1}\right\}$

Easy Variations / Consequences

- Deciding $\simeq_{\alpha, \text { CH }}$ is still GI-hard if expressions are restricted to one-level letrecs (since our encoding uses a one-level letrec)
- Non-recursive let: Deciding \simeq^{α}, CHNR is GI-hard: Use $\operatorname{enc}(G)=$ let $E n v_{V}$ in (let $E n v_{E}$ in $\left.x\right)$
- Hardness also holds for empty signature Σ :
- replace a by a free variable x_{a},
- replace $c\left(v_{i}, v_{j}\right)$ by let $y=v_{i}$ in v_{j}

GI-Completeness of Extended α-Equivalence

- We use labelled digraph isomorphism
- Encode CH-expressions s into a labelled digraph $G(s)$, example:

$$
s=\text { letrec } x=y ; y=z \text { in } x
$$

- Full encoding is given in the paper
- Verify: $G\left(s_{1}\right), G\left(s_{2}\right)$ are isomorphic iff $s_{1} \simeq{ }_{\alpha, \mathrm{CH}} s_{2}$

Theorem

Deciding $\simeq_{\alpha, \mathrm{CH}}$ is GI-complete.

GI-Completeness of Extended α-Equivalence

- We use labelled digraph isomorphism
- Encode CH -expressions s into a labelled digraph $G(s)$, example:

- Full encoding is given in the paper
- Verify: $G\left(s_{1}\right), G\left(s_{2}\right)$ are isomorphic iff $s_{1} \simeq{ }_{\alpha, \mathrm{CH}} s_{2}$

Theorem

Deciding $\simeq_{\alpha, \mathrm{CH}}$ is GI-complete.

Special Case: Removing Garbage

Garbage Collection

Garbage collection ($g c$): removing unused bindings
letrec $x_{1}=s_{1} ; \ldots ; x_{n}=s_{n}$ in $t \xrightarrow{g c} t \quad$ if $F V(t) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\emptyset$
letrec $x_{1}=s_{1} ; \ldots ; x_{n}=s_{n} ; \quad \xrightarrow{g c}$ letrec $y_{1}=t_{1} ; \ldots ; y_{m}=t_{m}$ $y_{1}=t_{1} ; \ldots ; y_{m}=t_{m} \quad$ in t_{m+1}
in t_{m+1}

$$
\text { if } \bigcup_{i=1}^{m+1} F V\left(t_{i}\right) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\emptyset
$$

Expression s is garbage-free if it is in ($g c$)-normal form

Lemma

For every CH -expression, its $(g c)$-normal form can be computed in time $O(n \log n)$

Theorem

If s_{1}, s_{2} are garbage free then $s_{1} \simeq{ }_{\alpha, \mathrm{CH}} s_{2}$
can be decided in $O(n \log n)$ where $n=\left|s_{1}\right|+\left|s_{2}\right|$.

Informal argument:

- Since the s_{1}, s_{2} are garbage free they can be uniquely traversed:

$$
\begin{aligned}
&(\text { letrec } E n v \text { in } s)^{*} \rightarrow \\
&\left(\text { letrec } E n v \text { in } s^{*}\right) \\
& \text { letrec } \ldots x=s \ldots C\left[x^{*}\right] \rightarrow \text { letrec } \ldots x=s^{*} \ldots C[x] \\
&(\text { if } x=s \text { was not visited already) }
\end{aligned}
$$

- This traversal can be used to fix an order of the bindings
letrec $x_{1}=s_{1} ; \ldots ; x_{n}=s_{n}$ in $t \rightarrow \operatorname{lrin}\left(x_{\pi(1)}=s_{\pi(1)}, \ldots, x_{\pi(n)}=s_{\pi(n)}, t\right)$
- Now usual algorithms for deciding α-equivalence of terms can be used (see e.g. Calvès \& Fernández '10)

Formal proof in the paper (sketch):

- Compute $G\left(s_{i}\right), i=1,2$
- $O O(\cdot)$ removes all var-edges from $G\left(s_{i}\right)$ resulting in $O O\left(G\left(s_{i}\right)\right)$

Formal proof in the paper (sketch):

- Compute $G\left(s_{i}\right), i=1,2$
- $O O(\cdot)$ removes all var-edges from $G\left(s_{i}\right)$ resulting in $O O\left(G\left(s_{i}\right)\right)$
- Since s_{i} are garbage-free, the graphs $O O\left(G\left(s_{i}\right)\right)$ are rooted outgoing-ordered labelled digraphs (OOLDGs)
- Isomorphism of rooted OOLDGs can be decided in $O(n \log n)$
- $G\left(s_{1}\right)$ and $G\left(s_{2}\right)$ are isom. iff $O O\left(G\left(s_{1}\right)\right)$ and $O O\left(G\left(s_{2}\right)\right)$ are isom.

OOLDG: Labelled digraph s.t.

Rooted OOLDG:

- weakly-connected
- exists root v : every other node is reachable from v

Formal proof in the paper (sketch):

- Compute $G\left(s_{i}\right), i=1,2$
- $O O(\cdot)$ removes all var-edges from $G\left(s_{i}\right)$ resulting in $O O\left(G\left(s_{i}\right)\right)$
- Since s_{i} are garbage-free, the graphs $O O\left(G\left(s_{i}\right)\right)$ are rooted outgoing-ordered labelled digraphs (OOLDGs)
- Isomorphism of rooted OOLDGs can be decided in $O(n \log n)$
- $G\left(s_{1}\right)$ and $G\left(s_{2}\right)$ are isom. iff $O O\left(G\left(s_{1}\right)\right)$ and $O O\left(G\left(s_{2}\right)\right)$ are isom.

OOLDG: Labelled digraph s.t.

Rooted OOLDG:

- weakly-connected
- exists root v : every other node is reachable from v

- Outgoing ordered LDG (OOLDG):

$$
l_{1} \neq l_{2}, \text { but } l_{3}=l_{4} \text { or } l_{3}=l_{1} \text { allowed }
$$

- Ordered LDG (OLDG):
$\left\{l_{1}, l_{2}, l_{3}, l_{4}\right\}$ required to be pairwise distinct
Remark:
- OOLDG-Isomorphism is GI-complete (proof in the paper)
- OLDG-Isomorphism is in P (Jian \& Bunke, 99)

Further consequences:

Extended α-Equivalence up to Garbage-Collection

CH -expressions s, t are alpha-equivalent up to garbage-collection written as $s \simeq_{\alpha, g c, \mathrm{CH}} t$, iff the (gc)-normal forms s^{\prime} and t^{\prime} of s and t are alpha-equivalent.

Theorem

$s_{1} \simeq{ }_{\alpha, g c, \mathrm{CH}} s_{2}$ can be decided in $O(n \log n)$ where $n=\left|s_{1}\right|+\left|s_{2}\right|$.

Applications

Extended α-equivalence is GI-complete in

- several letrec-calculi (Ariola'95, Ariola \& Blom'97,...)
- extended and non-deterministic letrec-calculi (Moran, Sands \& Carlsson '03, S. \& Schmidt-Schauß'08,...)
- fragment of Haskell: Recursive functions, data constructors, letrec-expressions

Remark: The result does not hold for let-calculi with non-recursive, single-binding let-expressions (e.g. Maraist, Odersky \& Wadler '98)

Structural Congruence in the π-Calculus

Syntax: $\quad P::=\pi . P\left|\left(P_{1} \mid P_{2}\right)\right|!P|\mathbf{0}| \nu x . P$

$$
\pi::=x(y) \mid \bar{x}\langle y\rangle
$$

Milner's structural congruence \equiv :
The least congruence satisfying the equations

$$
\begin{aligned}
P & \equiv Q, \text { if } P \text { and } Q \text { are } \alpha \text {-equivalent } \\
P_{1} \mid\left(P_{2} \mid P_{3}\right) & \equiv\left(P_{1} \mid P_{2}\right) \mid P_{3} \\
P_{1} \mid P_{2} & \equiv P_{2} \mid P_{1} \\
P \mid \mathbf{0} & \equiv P \\
\nu z . \nu w . P & \equiv \nu w . \nu z . P \\
\nu z . \mathbf{0} & \equiv \mathbf{0} \\
\nu z \cdot\left(P_{1} \mid P_{2}\right) & \equiv P_{1} \mid \nu z . P_{2}, \text { if } z \notin \mathrm{fn}\left(P_{1}\right) \\
!P & \equiv P \mid!P
\end{aligned}
$$

Open Question: Is \equiv decidable?

Lemma (see also (Khomenko \& Meyer '09))

Structural congruence \equiv is GI-hard even without replication.
Alternative proof: Polytime reduction of Digraph-Isomorphism:
Encode digraph $G=(V, E)$ with $V=\left\{v_{1}, \ldots, v_{n}\right\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$ as
$\varphi(G):=\nu v_{1}, \ldots, v_{n} \cdot\left(\varphi\left(v_{1}\right)|\ldots| \varphi\left(v_{n}\right)\left|\varphi\left(e_{1}\right)\right| \ldots \mid \varphi\left(e_{m}\right)\right)$ where

- for $v_{i} \in V: \varphi\left(v_{i}\right)=\overline{v_{i}}\langle a\rangle .0$
- for $e_{i}=\left(v_{j}, v_{k}\right) \in E: \varphi\left(e_{i}\right)=v_{j}\left(v_{k}\right) .0$

Then $\varphi\left(G_{1}\right) \equiv \varphi\left(G_{2}\right) \Longleftrightarrow G_{1}, G_{2}$ are isomorphic.

Fragment with replication but without binders

$$
s, s_{i} \in \mathcal{P} \mathcal{I R}:=C\left|\left(s_{1} \mid s_{2}\right)\right|!s \quad(C \text { represents constants })
$$

Structural congruence $\equiv_{p_{\text {IR }}}$ is the least congruence satisfying

$$
\begin{array}{lll}
\left(s_{1} \mid s_{2}\right) & \equiv_{p_{I \mathcal{R}}} & \left(s_{2} \mid s_{1}\right) \\
\left(s_{1} \mid\left(s_{2} \mid s_{3}\right)\right) & \equiv_{p_{I \mathcal{R}}}\left(\left(s_{1} \mid s_{2}\right) \mid s_{3}\right) \\
!s & \equiv_{p_{I \mathcal{R}}} s \mid!s
\end{array}
$$

π-Calculus: Specific Cases and Results (2)

Fragment with replication but without binders

$$
s, s_{i} \in \mathcal{P} \mathcal{I R}:=C\left|\left(s_{1} \mid s_{2}\right)\right|!s \quad(C \text { represents constants })
$$

Structural congruence $\equiv_{p_{I \mathcal{R}}}$ is the least congruence satisfying

$$
\begin{array}{lll}
\left(s_{1} \mid s_{2}\right) & \equiv_{p_{I \mathcal{R}}} & \left(s_{2} \mid s_{1}\right) \\
\left(s_{1} \mid\left(s_{2} \mid s_{3}\right)\right) & \equiv_{p_{I \mathcal{R}}} & \left(\left(s_{1} \mid s_{2}\right) \mid s_{3}\right) \\
!s & \equiv_{p_{I \mathcal{R}}} & s \mid!s
\end{array}
$$

Theorem

Deciding $s_{1} \equiv_{p_{\text {IR }}} s_{2}$ is EXPSPACE-complete

Proof: In EXPSPACE was shown by Engelfriet \& Gelsema' 07.
Hardness: Reduction of the word problem over commutative semigroups
Remark: Structural congruence in the full π-calculus with replication is thus EXPSPACE-hard, however decidability is still open.

Conclusion

- Extended α-equivalence in let- / letrec-calculi is GI-complete
- Complexity arises from garbage bindings (unless GI $\neq \mathbf{P}$)
- Including garbage-collection in the equivalence makes the decision problem efficiently solvable.
- π-calculus with replication:

Deciding structural congruence is a very hard problem

