Transforming Cycle Rewriting into String Rewriting

David Sabel ${ }^{1}$ and Hans Zantema ${ }^{2,3}$

${ }^{1}$ Goethe University Frankfurt, Germany
${ }^{2}$ TU Eindhoven, The Netherlands
${ }^{3}$ Radboud University Nijmegen, The Netherlands

RTA 2015, Warsaw, Poland

Cycle Rewriting

A cycle is a string in which the start and end are connected.

b	a	b	c	b	a	b	b	b	a	c	c

Cycle Rewriting

A cycle is a string in which the start and end are connected.

b	a	b	c	b	a	b	b	b	a	c	c

Cycle rewriting \rightarrow applies string rewrite rules to cycles, e.g. $R=\{\mathrm{cba} \rightarrow$ aabbcc $\}$

Cycle Rewriting

A cycle is a string in which the start and end are connected.

b	a	b	c	b	a	b	b	b	a	c	c

Cycle rewriting \rightarrow applies string rewrite rules to cycles, e.g. $R=\{\mathrm{cba} \rightarrow$ aabbcc $\}$

Cycle Rewriting

A cycle is a string in which the start and end are connected.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{c} \\
\hline
\end{array}
$$

Cycle rewriting $\circ \rightarrow$ applies string rewrite rules to cycles, e.g. $R=\{\mathrm{cba} \rightarrow$ aabbcc $\}$

Cycle Rewriting

A cycle is a string in which the start and end are connected.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{c} \\
\hline
\end{array}
$$

Cycle rewriting $\circ \rightarrow$ applies string rewrite rules to cycles, e.g. $R=\{\mathrm{cba} \rightarrow$ aabbcc $\}$

Cycle Rewriting

A cycle is a string in which the start and end are connected.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{c} \\
\hline
\end{array}
$$

Cycle rewriting \rightarrow applies string rewrite rules to cycles, e.g. $R=\{\mathrm{cba} \rightarrow$ aabbcc $\}$

- Termination analysis for graph transformation systems [Bruggink,König,Zantema 2014, IFIP TCS]

Applications of Cycle Rewriting

- Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]
- Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F : fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:
$\mathrm{TF} \rightarrow \mathrm{L} \quad$ (pick up left fork)
$\mathrm{FL} \rightarrow \mathrm{E} \quad$ (pick up right fork and eat)
$\mathrm{E} \rightarrow$ FTF (stop eating and put down forks)

Applications of Cycle Rewriting

- Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]
- Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F : fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:
$\mathrm{TF} \rightarrow \mathrm{L} \quad$ (pick up left fork)
$\mathrm{FL} \rightarrow \mathrm{E} \quad$ (pick up right fork and eat)
$\mathrm{E} \rightarrow$ FTF (stop eating and put down forks)

Applications of Cycle Rewriting

- Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]
- Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F : fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:
$\mathrm{TF} \rightarrow \mathrm{L} \quad$ (pick up left fork)
$\mathrm{FL} \rightarrow \mathrm{E} \quad$ (pick up right fork and eat)
$\mathrm{E} \rightarrow$ FTF (stop eating and put down forks)

Applications of Cycle Rewriting

- Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]
- Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:
$\mathrm{TF} \rightarrow \mathrm{L} \quad$ (pick up left fork)
$\mathrm{FL} \rightarrow \mathrm{E} \quad$ (pick up right fork and eat)
$\mathrm{E} \rightarrow$ FTF (stop eating and put down forks)

Applications of Cycle Rewriting

- Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]
- Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:
$\mathrm{TF} \rightarrow \mathrm{L} \quad$ (pick up left fork)
$\mathrm{FL} \rightarrow \mathrm{E} \quad$ (pick up right fork and eat)
$\mathrm{E} \rightarrow$ FTF (stop eating and put down forks)

Applications of Cycle Rewriting

- Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]
- Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:
$\mathrm{TF} \rightarrow \mathrm{L} \quad$ (pick up left fork)
$\mathrm{FL} \rightarrow \mathrm{E} \quad$ (pick up right fork and eat)
$\mathrm{E} \rightarrow$ FTF (stop eating and put down forks)

Applications of Cycle Rewriting

- Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]
- Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F : fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:
$\mathrm{TF} \rightarrow \mathrm{L} \quad$ (pick up left fork)
$\mathrm{FL} \rightarrow \mathrm{E} \quad$ (pick up right fork and eat)
$\mathrm{E} \rightarrow$ FTF (stop eating and put down forks)

Applications of Cycle Rewriting

- Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]
- Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F : fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:
$\mathrm{TF} \rightarrow \mathrm{L} \quad$ (pick up left fork)
$\mathrm{FL} \rightarrow \mathrm{E} \quad$ (pick up right fork and eat)
$\mathrm{E} \rightarrow$ FTF (stop eating and put down forks)

Cycle Rewriting (Formally)

Let Σ be an alphabet, R be an SRS over Σ

- $\boldsymbol{u} \sim \boldsymbol{v}=$ strings $u, v \in \Sigma^{*}$ represent the same cycle:

$$
u \sim v \text { iff } \exists w_{1}, w_{2}: u=w_{1} w_{2} \text { and } v=w_{2} w_{1}
$$

- cycle $[u]=$ equivalence class of string u w.r.t. \sim
- cycle rewrite relation $\rightarrow_{R} \subseteq(\Sigma / \sim \times \Sigma / \sim)$ of R :

$$
[u] \rightarrow_{R}[v] \text { iff } \exists w \in \Sigma^{*}: u \sim \ell w,(\ell \rightarrow r) \in R, \text { and } r w \sim v
$$

- \rightarrow_{R} is non-terminating iff there exists an infinite sequence

$$
\left[u_{0}\right] \rightarrow_{R}\left[u_{1}\right] \rightarrow_{R}\left[u_{2}\right] \mapsto_{R} \cdots
$$

- Otherwise, \mapsto_{R} is terminating.
- \rightarrow_{R} is non-terminating iff there exists an infinite sequence

$$
\left[u_{0}\right] \rightarrow_{R}\left[u_{1}\right] \rightarrow_{R}\left[u_{2}\right] \mapsto_{R} \cdots
$$

- Otherwise, $\circ \rightarrow_{R}$ is terminating.
- Cycle-termination is different from string-termination:
for $R=\{a b \rightarrow b a\}$
- \rightarrow_{R} is terminating, but
- $\circ \rightarrow_{R}$ is non-terminating
- But non-termination of \rightarrow_{R} implies non-termination of $\circ \rightarrow_{R}$

Previous Work [Zantema,König,Bruggink 2014,RTA-TLCA] яогтии

Termination techniques

- arctic and tropical matrix interpretations based on type-graphs
- implemented in torpacyc, iteratively removes rewrite rules using relative termination
- technique can only remove rules which are applied at most polynomially often in any derivation

Previous Work [Zantema,König,Bruggink 2014,RTA-TLCA]

Termination techniques

- arctic and tropical matrix interpretations based on type-graphs
- implemented in torpacyc, iteratively removes rewrite rules using relative termination
- technique can only remove rules which are applied at most polynomially often in any derivation
Complexity
Transformation ϕ on SRSs R ("string rewriting \rightarrow cycle rewriting") s.t.
\rightarrow_{R} is string-terminating $\Longleftrightarrow \rightarrow_{\phi(R)}$ is cycle-terminating
Consequences:
- proving cycle-termination is at least as hard as string-termination
- proving cycle-termination is undecidable

Our Contributions: Improved Termination Techniques

Transformational approach

(1) reduce cycle-termination to string-termination
(2) apply state-of-the-art ATPs to prove string-termination
required: transformation ψ : "cycle rewriting \rightarrow string rewriting" which is
sound: $\rightarrow_{\psi(R)}$ is string-terminating $\Longrightarrow \rightarrow_{R}$ is cycle-terminating
complete: \rightarrow_{R} is cycle-terminating $\Longrightarrow \rightarrow_{\psi(R)}$ is string-terminating
We provide three sound and complete transformations split, rotate, shift

Our Contributions: Improved Termination Techniques

Transformational approach

(1) reduce cycle-termination to string-termination
(2) apply state-of-the-art ATPs to prove string-termination
required: transformation ψ : "cycle rewriting \rightarrow string rewriting" which is
sound: $\rightarrow_{\psi(R)}$ is string-terminating $\Longrightarrow \rightarrow_{R}$ is cycle-terminating
complete: \rightarrow_{R} is cycle-terminating $\Longrightarrow \rightarrow_{\psi(R)}$ is string-terminating
We provide three sound and complete transformations split, rotate, shift

Trace-decreasing matrix interpreations

- following a suggestion of Johannes Waldmann
- extend the matrix interpretations from
[Zantema,König,Bruggink 2014,RTA]

For a cycle rewrite step $\left[u_{1}\right] \rightarrow_{\{\ell \rightarrow r\}}\left[u_{2}\right]$ and $v_{1} \in\left[u_{1}\right]$

For a cycle rewrite step $\left[u_{1}\right] \rightarrow_{\{\ell \rightarrow r\}}\left[u_{2}\right]$ and $v_{1} \in\left[u_{1}\right]$

- case 1: $v_{1} \rightarrow_{\{\ell \rightarrow r\}} v_{2}$ where $v_{2} \in\left[u_{2}\right]$

For a cycle rewrite step $\left[u_{1}\right] \rightarrow_{\{\ell \rightarrow r\}}\left[u_{2}\right]$ and $v_{1} \in\left[u_{1}\right]$

- case 2: we can split $\ell=\ell_{A} \ell_{B}$ s.t.

$$
v_{1}=\ell_{B} u \ell_{A} \rightarrow_{\left\{\ell_{B} \rightarrow \varepsilon\right\}} u \ell_{A} \rightarrow_{\left\{\ell_{A} \rightarrow r\right\}} \text { ur where ur } \in\left[u_{2}\right]
$$

$c|d a b b| c|c| d|c| a \mid a b$
$a|b| c|d| c|c| c|a| a|a| a$
cdabcdcdcaab $\rightarrow_{\{c d \rightarrow \varepsilon\}}$ abcdcdcaab $\rightarrow_{\{a b \rightarrow a a a a\}}$ abcdcdaaaa

For a cycle rewrite step $\left[u_{1}\right] \rightarrow_{\{\ell \rightarrow r\}}\left[u_{2}\right]$ and $v_{1} \in\left[u_{1}\right]$

- case 2: we can split $\ell=\ell_{A} \ell_{B}$ s.t.

$$
v_{1}=\overbrace{\left.\ell_{B} u \ell_{A} \rightarrow \ell_{B} \rightarrow \varepsilon\right\}}^{\text {prefix string rewrite step }} \underbrace{}_{\underbrace{u \ell_{A}}_{\text {suffix string rewrite step }} \rightarrow\left\{_{A} \rightarrow r\right\} \text { ur }} \text { where ur } \in\left[u_{2}\right]
$$

$c|d a| b|c| d|c| d|c| a \mid a b$
$a|b| c|d| c|d| c|a| a|a| a$
cdabcdcdcaab $\rightarrow_{\{c d \rightarrow \varepsilon\}}$ abcdcdcaab $\rightarrow_{\{\text {ab } \rightarrow \text { aaaa }\}}$ abcdcdaaaa

Naive (but sound) transformation:

- Add all rewrite rules $(\ell \rightarrow r)$
- Add all splitting rules $\left(\ell_{A} \rightarrow r\right)$ and $\left(\ell_{B} \rightarrow \varepsilon\right)$ for $\ell=\ell_{A} \ell_{B}$
\Rightarrow results in non-terminating SRSs in most of the cases
(i.e. whenever r contains some prefix ℓ_{A})

Naive (but sound) transformation:

- Add all rewrite rules $(\ell \rightarrow r)$
- Add all splitting rules $\left(\ell_{A} \rightarrow r\right)$ and $\left(\ell_{B} \rightarrow \varepsilon\right)$ for $\ell=\ell_{A} \ell_{B}$
\Rightarrow results in non-terminating SRSs in most of the cases (i.e. whenever r contains some prefix ℓ_{A})

Requirements for a better transformation (and for completeness)

- ensure that split rules are only applied to a prefix or a suffix, resp. \Rightarrow surround the string by fresh begin symbol B and end symbol E
- synchronize the application of the prefix and the suffix rewrite step \Rightarrow use fresh symbols \bar{a} for $a \in \Sigma$, and W, L and $\mathrm{R}_{i, j}$

Definition of the transformation split(.)

For an SRS R over alphabet Σ, the SRS split (R) over $\Sigma_{\text {split }}=\Sigma \cup \bar{\Sigma} \cup\left\{\mathrm{B}, \mathrm{E}, \mathrm{L}, \mathrm{W}, \mathrm{R}_{i, j}\right\}$ is constructed as follows:

- Let $(\ell \rightarrow r) \in R$ be the $i^{\text {th }}$ rule of R :
- add rule $\ell \rightarrow r$ (for case 1)
- for every splitting $\ell=\ell_{A} \ell_{B}$ with $\left|\ell_{A}\right|=j$, add the rules:

$$
\begin{array}{lll}
{\mathrm{B} \ell_{B}}^{\rightarrow} \rightarrow \mathrm{WR}_{i, j} & & \text { (prefix rewrite step) } \\
\mathrm{R}_{i, j} a & \rightarrow \bar{a} \mathrm{R}_{i, j} & \\
\mathrm{R}_{i, j} \ell_{A} \mathrm{E} & \rightarrow \mathrm{~L} r \mathrm{E} & \\
\text { (sunchronize, shift } \mathrm{R} \\
\text { (sufix rewrite step) }
\end{array}
$$

- add rules $\bar{a} \mathrm{~L} \rightarrow \mathrm{~L} a$ for all $a \in \Sigma$ (clean up)
- add rule WL \rightarrow B
(finish)

Split is Sound and Complete

Theorem

The transformation split is sound and complete,
i.e. $\rightarrow_{\text {split }(R)}$ is string-terminating iff \rightarrow_{R} is cycle-terminating.

- Soundness follows by construction:

$$
[u] \rightarrow_{R}[v] \Longrightarrow \mathrm{B} u \mathrm{E} \rightarrow_{\operatorname{split}(R)}^{+} \mathrm{B} v^{\prime} \mathrm{E} \text { where } v^{\prime} \sim v
$$

- Completeness can be shown by
- type introduction [Zantema 1994, JSC]
- a mapping $\Phi:: \Sigma_{\text {split }}^{*} \rightarrow \Sigma^{*}$ with

$$
\forall u:: T: u \rightarrow_{\text {split }(R)} u^{\prime} \quad \Longrightarrow \quad[\Phi(u)] \rightarrow_{R}^{*}\left[\Phi\left(u^{\prime}\right)\right]
$$

- $M_{d}:=$ all $d \times d$ matrices A over \mathbb{N} s.t. $A_{11}>0$
- for $A, B \in M_{d}$,

$$
\begin{aligned}
& A>B \quad \Longleftrightarrow \quad A_{11}>B_{11} \wedge \forall i, j: A_{i j} \geq B_{i j} \\
& A \geq B \quad \Longleftrightarrow \quad \forall i, j: A_{i j} \geq B_{i j}
\end{aligned}
$$

- $M_{d}:=$ all $d \times d$ matrices A over \mathbb{N} s.t. $A_{11}>0$
- for $A, B \in M_{d}$,

$$
\begin{aligned}
& A>B \quad \Longleftrightarrow \quad A_{11}>B_{11} \wedge \forall i, j: A_{i j} \geq B_{i j} \\
& A \geq B \quad \Longleftrightarrow \quad \forall i, j: A_{i j} \geq B_{i j}
\end{aligned}
$$

- a matrix interpretation $\langle\cdot\rangle: \Sigma \rightarrow M_{d}$ is extended to strings as

$$
\langle\varepsilon\rangle=I \quad \text { and } \quad\langle u a\rangle=\langle u\rangle \times\langle a\rangle \text { for all } u \in \Sigma^{*}, a \in \Sigma
$$

where I is the identity matrix, \times is matrix multiplication

Trace-Decreasing Matrix Interpretations

Theorem

Let $R^{\prime} \subseteq R$ be SRSs over Σ and let $\langle\cdot\rangle: \Sigma \rightarrow M_{d}$ such that

- $\circ \rightarrow_{R^{\prime}}$ is terminating,
- $\langle\ell\rangle \geq\langle r\rangle$ for all $(\ell \rightarrow r) \in R^{\prime}$, and
- $\langle\ell\rangle>\langle r\rangle$ for all $(\ell \rightarrow r) \in R \backslash R^{\prime}$.

Then \rightarrow_{R} is terminating.

Trace-Decreasing Matrix Interpretations

Theorem

Let $R^{\prime} \subseteq R$ be SRSs over Σ and let $\langle\cdot\rangle: \Sigma \rightarrow M_{d}$ such that

- $\rightarrow_{R^{\prime}}$ is terminating,
- $\langle\ell\rangle \geq\langle r\rangle$ for all $(\ell \rightarrow r) \in R^{\prime}$, and
- $\langle\ell\rangle>\langle r\rangle$ for all $(\ell \rightarrow r) \in R \backslash R^{\prime}$.

Then $\circ \rightarrow_{R}$ is terminating.
Proof: The main observations are

- $\operatorname{trace}(\langle a\rangle \times\langle u\rangle)=\operatorname{trace}(\langle u\rangle \times\langle a\rangle)$ and thus $\operatorname{trace}(\langle u\rangle)=\operatorname{trace}(\langle v\rangle)$ if $u \sim v$
- $>, \geq$ are stable w.r.t \times, and thus $\langle\ell\rangle>\langle r\rangle \Longrightarrow\langle\ell w\rangle>\langle r w\rangle$
- $[u] \rightarrow_{R^{\prime}}[v] \Longrightarrow \operatorname{trace}(\langle u\rangle) \geq \operatorname{trace}(\langle v\rangle)$, and
- $[u] \rightarrow_{R \backslash R^{\prime}}[v] \Longrightarrow \operatorname{trace}(\langle u\rangle)>\operatorname{trace}(\langle v\rangle)$

Trace-decreasing matrix interpretations

- can remove rules which are applied exponentially often (improves [Zantema, König, Bruggink 2014,RTA])
- impossible to remove rules which are applied more often

Improvements and Limitations

Trace－decreasing matrix interpretations

－can remove rules which are applied exponentially often （improves［Zantema，König，Bruggink 2014，RTA］）
－impossible to remove rules which are applied more often
Example（adapted from［Hofbauer and Waldmann 2006，RTA］）

$$
\begin{aligned}
\mathcal{R}:= & \phi(\{a b \rightarrow b c a, c b \rightarrow b b c\}) \\
= & \left\{R E \rightarrow L E, a L \rightarrow L a^{\prime}, b L \rightarrow L b^{\prime}, c L \rightarrow L c^{\prime}, R a^{\prime} \rightarrow a R,\right. \\
& \left.R b^{\prime} \rightarrow b R, R c^{\prime} \rightarrow c R, a b L \rightarrow b c a R, c b L \rightarrow b b c R\right\}
\end{aligned}
$$

－has cycle rewrite derivations where the number of rule applications is a tower of exponentials for each rule
－impossible to prove cycle termination by trace－decreasing matrix interpretations

Improvements and Limitations

Trace-decreasing matrix interpretations

- can remove rules which are applied exponentially often (improves [Zantema, König, Bruggink 2014,RTA])
- impossible to remove rules which are applied more often

Example (adapted from [Hofbauer and Waldmann 2006,RTA])

$$
\begin{aligned}
\mathcal{R}:= & \phi(\{a b \rightarrow b c a, c b \rightarrow b b c\}) \\
= & \left\{R E \rightarrow L E, a L \rightarrow L a^{\prime}, b L \rightarrow L b^{\prime}, c L \rightarrow L c^{\prime}, R a^{\prime} \rightarrow a R,\right. \\
& \left.R b^{\prime} \rightarrow b R, R c^{\prime} \rightarrow c R, a b L \rightarrow b c a R, c b L \rightarrow b b c R\right\}
\end{aligned}
$$

- has cycle rewrite derivations where the number of rule applications is a tower of exponentials for each rule
- impossible to prove cycle termination by trace-decreasing matrix interpretations
- but AProVE proves string termination of $\operatorname{split}(\mathcal{R})$ \Rightarrow transformational approach succeeds

Experiments

Techniques

- torpacyc: trace decreasing matrix interpretations
- transformations split, rotate, shift with AProVE and $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}$
- combination 1: first torpacyc then transformation split
- combination 2: like combination 1, but first string-nontermination check by AProVE, or $\mathrm{T}^{\top} \mathrm{T}_{2}$, resp.
Tools and webinterface available via
http://www.ki.cs.uni-frankfurt.de/research/cycsrs

Cycle Non-/Termination of TPDB/SRS-Standard

torpacyc 201436
torpacyc 201546split(AProVE) 40309
$\operatorname{split}\left(T_{T} T_{2}\right) 30$ 168
rotate(AProVE) 10 45
rotate $\left(\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}\right) 6$
shift(AProVE) 10 65
$\operatorname{shift}\left(\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}\right) 8$
comb1(AProVE) 55 310
comb1 $\left(T_{T} T_{2}\right) 55$ 161
comb2(AProVE) 54 335
comb2 $\left(T_{T} T_{2}\right) 54$ 173
any 63
cycle termination proved, cycle nontermination proved3361315 problems, timeout $60 \mathrm{sec}, 916$ problems remain open

Cycle Non-/Termination of 50000 Random SRS

50000 randomly generated problems

- of size 12 with $|\Sigma|=3$
- no obviously nonterminating problems

Results

- rotate and shift show termination of 74% of the problems
- torpacyc and split show termination of 94% of the problems
- In total (combining all results):

Conclusion

- new techniques to prove cycle termination
- three sound and complete transformations
from cycle into string rewriting
- transformation snlit seems to be useful in practice
- trace-decreasing matrix interpretations
- new techniques solve problems for which the earlier techniques failed

Conclusion

- new techniques to prove cycle termination
- three sound and complete transformations
from cycle into string rewriting
- transformation split seems to be useful in practice
- trace-decreasing matrix interpretations
- new techniques solve problems for which the earlier techniques failed

Conclusion

- new techniques to prove cycle termination
- three sound and complete transformations
from cycle into string rewriting
- transformation split seems to be useful in practice
- trace-decreasing matrix interpretations
- new techniques solve problems for which the earlier techniques failed

Conclusion

- new techniques to prove cycle termination
- three sound and complete transformations from cycle into string rewriting
- transformation split seems to be useful in practice
- trace-decreasing matrix interpretations
- new techniques solve problems for which the earlier techniques failed

Conclusion

- new techniques to prove cycle termination
- three sound and complete transformations from cycle into string rewriting
- transformation split seems to be useful in practice
- trace-decreasing matrix interpretations
- new techniques solve problems for which the earlier techniques failed

Future work

- extend the benchmark problem set
- specific methods for cycle non-termination
- applications for cycle rewriting

