

1

Applicative May- and Should-Simulation
in the Call-by-Value Lambda Calculus

with AMB

Manfred Schmidt-Schauß, David Sabel

Goethe-University, Frankfurt, Germany

RTA/TLCA ’14, Vienna, Austria

Motivation

Semantics of higher-order programming languages

Nondeterminism and concurrency

Correctness of program transformations
(e.g. compiler optimizations)

Contextual equivalence as program semantics

Requires proof techniques and tools

2/20

Contextual Equivalence for Nondeterminism

Contextual Equivalence, informally:
Programs are equal iff

they have the same termination behavior in all program contexts

Nondeterminism requires:

observe whether a program may terminate

and observe whether a program should (or must) terminate.

Must- and Should termination:

must: terminate (successfully) in any case

should: No possibility to run into an error, weak divergences allowed

s oks

⊥

ok

3/20

Applicative Similarity

Programs s and t are applicative bisimilar if

s and t “behave” identically using the following test:

s terminates with value vs ⇐⇒ t terminates with program vt

applying vs and vt to argument r:
(vs r) and (vt r) are again applicative bisimilar

Advantages:

reasoning about contexts is not necessary

similarity of expressions can be proved by coinduction

a sound similarity is a valuable proof tool

4/20

Previous Work and Goals
State of the art:

several sound applicative similarities for deterministic and
nondeterministic calculi exist
(e.g. Abramsky ’90; Howe ’89; Ong ’93; Lassen & Pitcher ’00;
Biernacki & Lenglet ’12)

there are some unsound cases:

Impure lambda calculi with storage
(Mason & Talcott ’91; Koutavas, Levy & Sumii ’10)
Nondeterministic languages with recursive bindings
(Schmidt-Schauß, S., Machkasova ’11)

none covers the combination of may- and should-convergence

Our goal

Find a sound applicative similarity for Should-Convergence

To keep things simple:
we consider a basic language with nondetermism

5/20

McCarthy’s amb-Operator

Operational semantics of (amb s t):

evaluate s and t concurrently

take the first result which becomes available

Equational semantics:

amb s ⊥ = s = amb ⊥ s (bottom-avoidance)

amb s t = s or t if s 6= ⊥ 6= t (nondeterminism)

Expressiveness:

amb can encode a lot of other nondeterministic operators

erratic choice: choice s t = (amb (λ .s) (λ .t)) id

demonic choice: dchoice s t = (amb (λx, y.x) (λx, y.y)) s t

parallel or, parallel convergence tester, bottom-avoiding
list-merge, . . .

6/20

amb is Challenging

The semantics of amb is studied since several decades

(e.g. McCarthy ’63, Broy ’86, Panangaden ’88, Moran ’98,
Lassen & Moran ’99, Lassen ’06, Levy ’07, S. &
Schmidt-Schauß ’08)

Open question whether a sound applicative similarity for
may- and must-convergence exists (Lassen ’06)

Negative answer for a typed calculus with may- and
must-convergence (Levy ’07)

7/20

Call-by-Value AMB Lambda-Calculus LCA

Expressions:

s, t ∈ Expr ::= x | λx.s | (s t) | (amb s t)

Evaluation contexts:

E ∈ E ::= [·] | (E s) | ((λx.s) E) | (amb E s) | (amb s E)

Call-by-value reduction:

(cbvbeta) E[((λx.s) (λy.t))]
LCA−−−→ E[s[(λy.t)/x]]

(ambl) E[(amb (λx.s) t)]
LCA−−−→ E[λx.s]

(ambr) E[(amb t (λx.s))]
LCA−−−→ E[λx.s]

8/20

Contextual Equivalence in LCA

May-convergence: s ↓ iff ∃λx.s′ : s LCA,∗−−−−→ λx.s′

(we also write s ↓ λx.s′ in this case)

Should-convergence: s ⇓ iff ∀t : s
LCA,∗−−−−→ t =⇒ t ↓

Must-Divergence: s ⇑ iff ¬(s ↓)

May-Divergence: s ↑ iff ¬(s ⇓) (= ∃s′ : s LCA,∗−−−−→ s′ ∧ s′ ⇑)

Contextual Preorder & Equivalence

For ξ ∈ {↓,⇓, ↑,⇑}:
s ≤ξ t iff for all C,C[s] and C[t] are closed: C[s]ξ =⇒ C[t]ξ

s ∼ξ t iff s ≤ξ t and t ≤ξ s

Contextual preorder: s ≤LCA t iff s ≤↓ t ∧ s ≤⇓ t

Contextual equivalence s ∼LCA t iff s ∼↓ t ∧ s ∼⇓ t

9/20

Applicative Similarity for May-Convergence in LCA

ηo = open value-extension of η:
s ηo t iff σ(s) η σ(t) for all closing value substitutions σ

Expr c = all closed expressions

May-Similarity 4↓:

Greatest fixpoint of F↓ : (Expr c × Expr c)→ (Expr c × Expr c) where

s F↓(η) t if s↓ λx.s′ =⇒
(
∃λx.t′ with t↓ λx.t′ and s′ ηo t′

)
Lemma

s 4↓ t iff s↓ λx.s′ =⇒
(
∃λx.t′ with t↓ λx.t′ and s′ 4o

↓ t
′)

Theorem

4o
↓ ⊂ ≤↓ and 4o

↓ is a precongruence.

Proof: Soundness and precongruence: by Howe’s method.
Incompleteness: by counterexample (Lassen’98; Mann’05)

10/20

Applicative Similarity for May-Convergence in LCA

ηo = open value-extension of η:
s ηo t iff σ(s) η σ(t) for all closing value substitutions σ

Expr c = all closed expressions

May-Similarity 4↓:

Greatest fixpoint of F↓ : (Expr c × Expr c)→ (Expr c × Expr c) where

s F↓(η) t if s↓ λx.s′ =⇒
(
∃λx.t′ with t↓ λx.t′ and s′ ηo t′

)
Lemma

s 4↓ t iff s↓ λx.s′ =⇒
(
∃λx.t′ with t↓ λx.t′ and s′ 4o

↓ t
′)

Theorem

4o
↓ ⊂ ≤↓ and 4o

↓ is a precongruence.

Proof: Soundness and precongruence: by Howe’s method.
Incompleteness: by counterexample (Lassen’98; Mann’05)

10/20

Applicative Should-Similarity in LCA

Should-Similarity 4↑:

Greatest fixpoint of F↑ : (Expr c × Expr c)→ (Expr c × Expr c) where

s F↑(η) t if

s ↑ =⇒ t ↑
t 4↓ s

s↓ λx.s′ =⇒
(
∃λx.t′ with t↓ λx.t′ and s′ ηo t′

)
.

Theorem

4o
↑ ⊂ ≤↑ = ≥⇓ and 4o

↑ is a precongruence.

Proof: Soundness and precongruence: Howe’s method (next slide)
Incompleteness: by counterexample (in the paper)

11/20

Precongruence Proof

Goal:

show that 4o
↑ is a precongruence

implies that 4o
↑ ⊆ ≤↑ (since s 4↑ t implies s ↑ =⇒ t ↑)

Problems:

4↑ is obviously reflexive and transitive,
but there is no direct proof of compatibility with contexts

Howe’s Method:

build candidate 4H which is compatible with contexts

show that 4H = 4o
↑

implies 4H and 4o
↑ are precongruences

12/20

Precongruence Proof (2)

Candidate Relation 4H

1 If x 4o
↑ s then x 4H s.

2 If τ(s′1, . . . , s
′
n) 4o

↑ s with si 4H s′i, then τ(s1, . . . , sn) 4H s.
(with τ = λ,@, amb)

Theorem

4↑ = 4c
H

Proof sketch:

s 4↑ t =⇒ s 4c
H t: Induction on the term structure of s

s 4c
H t =⇒ s 4↑ t: Show that 4c

H is F↑-dense i.e. 4c
H⊆ F↑(4c

H).
Requires to show for s 4c

H t:

s ↑ =⇒ t ↑
t 4↓ s
s ↓ λx.s′ =⇒ ∃λx.t′ : t ↓ λx.t′ and s′ 4H t′

Proof uses 4H⊂ 4↓ ∩<↓ and that 4↓ is a precongruence.
13/20

Main Theorem

For α ∈ {↓, ↑}:

Mutual Similarity ≈α := 4α ∩<α

Bisimilarity 'α: Greatest fixp. of Gα with Gα(η) = Fα(η) ∩ Fα(η−1)

Main Theorem

The similarities 4o
↓ and 4o

↑ are precongruences, the mutual similarities
≈o↓, ≈o↑, and the bisimilarity 'o↑ are congruences.
Moreover, the following soundness results hold:

1 4o
↓ ⊂ ≤↓ and ≈o↓ ⊂ ∼↓.

2 4o
↑ ⊂ ≥LCA and ≈o↑ ⊂ ∼LCA.

3 'o↑ ⊆ ≈o↑ ⊂ ∼LCA.

Note: s 4o
↑ t =⇒ s ≈↓ t

14/20

Some Equivalences proved by Applicative Similarity

(λx.s) (λx.t) ∼LCA s[λx.t/x]

(amb Ω s) ∼LCA s

(amb s s) ∼LCA s

(amb s t) ∼LCA (amb t s)

amb s1 (amb s2 s3) ∼LCA amb (amb s1 s2) s3

Y λf.λx.amb x (f x)︸ ︷︷ ︸
roughly: f x = amb x (f x)

∼LCA λx.x

15/20

Other Definitions of Should-Similarity

In the paper: other definitions of Should-Similarity

some are shown to be unsound

for some other definitions their soundness is open

For instance:

Convex Should-Similarity 4↑X = gfp(F↑X):
s F↑X (η) t if

s↑ =⇒ t↑
t 4↓ s

t⇓ =⇒
(
s↓ λx.s′ =⇒

(
∃λx.t′ with t↓ λx.t′ and s′ ηo t′

))
.

Proposition

Convex should similarity is unsound in LCA.

16/20

Call-by-Value Calculus with Erratic Choice LCC

Expressions:

s, t ∈ Expr ::= x | λx.s | (s t) | (choice s t)

Evaluation contexts:

E ∈ E ::= [·] | (E s) | ((λx.s) E)

Call-by-value reduction:

(cbvbeta) E[((λx.s) (λy.t))]
LCC−−−→ E[s[(λy.t)/x]]

(choicel) E[(choice s t)]
LCC−−−→ E[s]

(choicer) E[(choice s t)]
LCC−−−→ E[t]

17/20

Similarities in LCC

May-Similarity in LCC, 4↓: s F↓(η) t if:

s↓ λx.s′ =⇒
(
∃λx.t′ with t↓ λx.t′ and s′ ηo t′

)
.

Convex Should-Similarity in LCC, 4↑X : s F↑X (η) t if:

s↑ =⇒ t↑
t 4↓ s

t ⇓ =⇒
(
s↓ λx.s′ =⇒

(
∃λx.t′ with t↓ λx.t′ and s′ ηo t′

))
Mutual Convex Should-Similarity: ≈↑X := 4↑X ∩<↑X

Theorem

4o
↑X ⊂ ≥LCC and ≈o↑X ⊂ ∼LCC .

Proof: Soundness by Howe’s method
Incompleteness by counterexample.

18/20

Conclusion

sound applicative similarities, and bisimilarities for
contextual equivalence with may- and should-convergence

for call-by-value calculi with amb and choice

proof by (adaption of) Howe’s method

19/20

Further work

Sound applicative similarity for nondeterministic call-by-need
calculi with should-convergence
(may extend results on may-similarity from Mann ’05 and
Mann & Schmidt-Schauß’ 10)

Sound applicative similarity for concurrency, e.g. process
calculus CHF (S.& Schmidt-Schauß ’11; ’12) modeling
Concurrent Haskell

20/20

Backup slides

Counter Example: Incompleteness of May-Similarity

Proposition

≈o↓ 6= ∼↓

Y = λf.(λx.f λz.(x x z)) (λx.f λz.(x x z))

Top = Y λx, y.x

F = λf.λz.choice (λx.Ω) ((λx1, x2.x1) (f z))

Y F Id reduces to λx1, . . . , xn.Ω for any n ≥ 1.

Y F Id ∼↓ Top.

Top 64↓ Y F Id since the definition of 4↓ requires to choose
and fix n before recursively testing.

2/4

Counter Example: Incompleteness of Should-Similarity

Proposition

4o
↑ 6= ≤↑

A = choice Ω (λx.A),

B0 = Top, Bi+1 = λx.choice Ω Bi; and

B = choice Ω (choice B0 (choice B1 . . .)).

A ∼LCA B.

A 64↑ B since

A 4↑ B =⇒ A 4↑ Bi and A 4↑ Bi =⇒ A 4↑ Bi−1
Thus A 4↑ B0 is required, but A 64↑ Top since A ↑ while
Top ⇓.

3/4

Counter Example: Unsoundness of Convex
Should-Similarity in LCA

Convex Should-Similarity 4↑X = gfp(F↑X):
s F↑X (η) t if

s↑ =⇒ t↑
t 4↓ s

t⇓ =⇒
(
s↓ λx.s′ =⇒

(
∃λx.t′ with t↓ λx.t′ and s′ ηo t′

))
.

Proposition

Convex should similarity is unsound in LCA.

b1 := λx1.Ω b2 := λx1, x2.Ω b3 := λx1, x2, x3.Ω

s1 := amb b1 b3 s2 := amb b1 (amb b2 b3)

s2 4↑X s1: S ⊆ F↑X (S) with S := {(s1, s2), (b1, b1), (b3, b3), (b2, b1), (b1,Ω)}

s2 6≤↑ s1: C[s2] ↑ but C[s1] ⇓ with C := (amb ([·] id) id) id
4/4

	Anhang

