GOETHE @a

UNIVERSITAT

FRANKFURT AM MAIN

Applicative May- and Should-Simulation
in the Call-by-Value Lambda Calculus
with AMB

Manfred Schmidt-SchauBB, David Sabel

Goethe-University, Frankfurt, Germany

RTA/TLCA '14, Vienna, Austria

Motivation

Semantics of higher-order programming languages

Nondeterminism and concurrency

Correctness of program transformations
(e.g. compiler optimizations)

e Contextual equivalence as program semantics

Requires proof techniques and tools

2/20

Contextual Equivalence for Nondeterminism

Contextual Equivalence, informally:
Programs are equal iff
they have the same termination behavior in all program contexts

Nondeterminism requires:
@ observe whether a program may terminate

@ and observe whether a program should (or must) terminate.

Must- and Should termination:
e must: terminate (successfully) in any case

@ should: No possibility to run into an error, weak divergences allowed

-

3/20

Applicative Similarity

Programs s and t¢ are applicative bisimilar if

s and t “behave” identically using the following test:

@ s terminates with value v; <= t terminates with program v,

@ applying vs and v; to argument r:
(vs) and (v; 1) are again applicative bisimilar

Advantages:
@ reasoning about contexts is not necessary
@ similarity of expressions can be proved by coinduction

@ a sound similarity is a valuable proof tool

4/20

Previous Work and Goals el
State of the art:
@ several sound applicative similarities for deterministic and
nondeterministic calculi exist

(e.g. Abramsky '90; Howe '89; Ong '93; Lassen & Pitcher '00;
Biernacki & Lenglet '12)

@ there are some unsound cases:

e Impure lambda calculi with storage
(Mason & Talcott '91; Koutavas, Levy & Sumii '10)
o Nondeterministic languages with recursive bindings
(Schmidt-SchauB, S., Machkasova '11)

@ none covers the combination of may- and should-convergence

Our goal J

Find a sound applicative similarity for Should-Convergence

To keep things simple:
we consider a basic language with nondetermism
5/20

McCarthy's amb-Operator o

Operational semantics of (amb s ?):
@ evaluate s and t concurrently

o take the first result which becomes available

Equational semantics:
@ amb s | =s=amb L s (bottom-avoidance)

@ amb st =sortif s# L #t¢ (nondeterminism)

Expressiveness:
@ amb can encode a lot of other nondeterministic operators
e erratic choice: choice st = (amb (A_.s) (A_.t)) id
e demonic choice: dchoice s t = (amb (A\z,y.z) (Az,y.y)) st

@ parallel or, parallel convergence tester, bottom-avoiding
list-merge, ...

6/20

amb is Challenging o

@ The semantics of amb is studied since several decades

(e.g. McCarthy '63, Broy '86, Panangaden '88, Moran '98,
Lassen & Moran '99, Lassen '06, Levy '07, S. &
Schmidt-SchauB '08)

@ Open question whether a sound applicative similarity for
may- and must-convergence exists (Lassen '06)

o Negative answer for a typed calculus with may- and
must-convergence (Levy '07)

7/20

Call-by-Value AMB Lambda-Calculus LCA o

Expressions:
s,t € Expr :=x | Ax.s | (s t) | (amb s t)

Evaluation contexts:
EcE:=[]|(Es)|((Ar.s) E) | (amb E s) | (amb s E)

Call-by-value reduction:

(cbvbeta) E[((Az.s) (Ay.t)] =% Els[(Ay.t)/a]]
(ambl) Ef(amb (\z.s) t)] 2% E[\z.s]
LCA]

(ambr) E[(amb t (Az.s))] 24 E[\z

8/20

Contextual Equivalence in LCA o

May-convergence: s | iff I\z.s’ : s LOAx e

(we also write s | Az.s" in this case)

Should-convergence: s |} iff Vt : s % t = t|
Must-Divergence: s iff =(s)
May-Divergence: stiff ~(s{) (=3¢ : s LA g A s)

Contextual Preorder & Equivalence

For € € {1, 4, 1,1}
o s <¢ tiff for all C,C[s| and C[t] are closed: C[s]¢ = C[t]¢
(] s~5tiffs§§tandt§§s

Contextual preorder: s<pcatiffs< tAs<yt

Contextual equivalence s~pcatiffs~ tAs~yt

9/20

Applicative Similarity for May-Convergence in LCA o

© = open value-extension of n:

s n° tiff o(s) n o(t) for all closing value substitutions o
Ezpre = all closed expressions

Ui

May-Similarity <:
Greatest fixpoint of F)| : (Ezpr® x Expr®) — (Expr® x Expr®) where

s Fi(n)t if sl Az.s’ = (3Ax.t’ with t] Az.t’ and s" n° t')

Lemma
s <y tiff sl Az.s’ = (IAw.t’ with ¢ Az.t’ and & <9 t) J

10/20

Applicative Similarity for May-Convergence in LCA o

n° = open value-extension of n:

s n° tiff o(s) n o(t) for all closing value substitutions o
Ezpre = all closed expressions

May-Similarity <:
Greatest fixpoint of F)| : (Ezpr® x Expr®) — (Expr® x Expr®) where

s Fi(n)t if sl Az.s’ = (3Ax.t’ with t] Az.t’ and s" n° t')

Lemma
s <y tiff sl Az.s’ = (IAw.t’ with ¢ Az.t’ and & <9 t)

Theorem
<{ C < and X is a precongruence.

Proof: Soundness and precongruence: by Howe's method.

Incompleteness: by counterexample (Lassen'98; Mann'05) 10/20

Applicative Should-Similarity in LCA o

Should-Similarity <
Greatest fixpoint of Fy : (Ezpr® x Expre) — (Expr® x Expr©) where
s Fy(n) tif
o st= t¢
0=y
o sl Az.s’ = (Ia.t’ with t] Az.t’ and 5" n° t).

Theorem
<$ C <4 = >y and ﬁ? is a precongruence. J

Proof: Soundness and precongruence: Howe's method (next slide)
Incompleteness: by counterexample (in the paper)

11/20

Precongruence Proof S
Goal:

@ show that <$ is a precongruence
o implies that < C <4 (since s <4 t implies s T = ¢ 1)

Problems:

@ < is obviously reflexive and transitive,
but there is no direct proof of compatibility with contexts

Howe’s Method:
@ build candidate <y which is compatible with contexts
@ show that <y = <$

@ implies <y and <$ are precongruences

12/20

Precongruence Proof (2) cormne B

Candidate Relation <y
O IfzxYsthenz <y s.

Q If 7(s),...,s)) <{ s with s; <y sh, then 7(s1,...,8n) < s.
(with 7 = A, @, amb)

Theorem

<t = sy

Proof sketch:
@ s <4t = s <Y t: Induction on the term structure of s
° s<f t = s =4 t: Show that <5, is Fy-dense i.e. <4,C F4(x%).
Requires to show for s <% t:
o sT=t7
et
o slAz.s’ = Izt it Azt and s’ Ly t/

Proof uses <y C < N =] and that < is a precongruence.
13/20

|\/| ain T h eorem 3OETH§

For o € {|,1}:
@ Mutual Similarity ~, := <, N =4

e Bisimilarity ~,: Greatest fixp. of G, with G (1) = F,(n) N Fy(n™t)

Main Theorem

The similarities <] and <% are precongruences the mutual similarities
~7 T' and the b|S|m|Iar|ty £ are congruences.

Moreover the following soundness results hold:

(1] %i §¢ and %i C ~y.

~

C
Q@ <{ C Zrcaand ¢ C ~pca.
C =~ C ~rea

®

Note:s#?t = s~ t

14/20

Some Equivalences proved by Applicative Similarity

GOETHE, 53

UNIVERSITAT

amb $; (amb s2 s3
Y AfAz.amb z (f)

roughly: f x = amb = (f z)

~LCA

~LCA

~LCA

~LCA

~LCA

~LCA

s[Az.t/x]

s

s

(amb ¢ s)

amb (amb s1 s2) S3

AL X

15/20

Other Definitions of Should-Similarity o

@ In the paper: other definitions of Should-Similarity
@ some are shown to be unsound
@ for some other definitions their soundness is open
@ For instance:
Convex Should-Similarity <, = gfp(F},):
s Fry (n) tif
o st = tt
01l s
o t| = (sl Az.s’ = (FAx.t/ with t] Az.t’ and 5" n° t')).

Proposition J

Convex should similarity is unsound in LCA.

16/20

Call-by-Value Calculus with Erratic Choice LC'C o @

UNIVERSITAT

Expressions:

s,t € Expr :=x | Ax.s | (s t) | (choice s t)
Evaluation contexts:
EcE:=[]|(Es) | ((\r.s) E)

Call-by-value reduction:

(cbvbeta) E[(M\z.s) (M\y.t))] =5 E[s[(\y.t)/2]]
(choicel) E[(choice s t)] <% Els]
(choicer) E[(choice s t)] =% B[t

17/20

Similarities in LCC CERSTTAY

May-Similarity in LCC, <;: s F|(n) t if:
o sl \z.s = (El)w.t’ with ¢t/ Az.t" and s’ 7° t’).

Convex Should-Similarity in LCC, <4,: s Fr () tif:

o st = tt

01

ot — (s¢ PV (EI)\:r.t’ with t) A\z.t" and s’ n° t’))
Mutual Convex Should-Similarity: ~, = <y, N =1,

Theorem
<ty € 2Zrcc and =} C ~pcc. J

Proof: Soundness by Howe's method
Incompleteness by counterexample.

18/20

Conclusion

o sound applicative similarities, and bisimilarities for
contextual equivalence with may- and should-convergence

@ for call-by-value calculi with amb and choice

@ proof by (adaption of) Howe's method

19/20

Further work

@ Sound applicative similarity for nondeterministic call-by-need
calculi with should-convergence
(may extend results on may-similarity from Mann '05 and
Mann & Schmidt-SchauB' 10)

@ Sound applicative similarity for concurrency, e.g. process
calculus CHF' (S.& Schmidt-SchauB '11; '12) modeling
Concurrent Haskell

20/20

Backup slides

Counter Example: Incompleteness of May-Similarity o f

Proposition
%i ;é) J

o Y = \Af.(\z.f Az.(x x 2)) (M\x.f Az.(z x 2))
Top =Y A\x,y.x

F = MfAz.choice (Ax.Q) ((A\x1,22.21) (f 2))
Y F' Id reduces to Axq,...,x,.C2 for any n > 1.
Y F Id ~| Top.

Top A, Y F Id since the definition of < requires to choose
and fix n before recursively testing.

2/4

Counter Example: Incompleteness of Should-Similarit

NIVERSITAT

Proposition
< #F <t J

A = choice Q (A\z.A),
By = Top, Bi+1 = A\z.choice B;; and
B = choice) (choice By (choice Bj ...)).
A~poa B.
A £+ B since
° A#TB - A#TBZ andA#TBi - A#TBi—l
o Thus A <+ By is required, but A £+ Top since A 1 while
Top).

3/4

Counter Example: Unsoundness of Convex o

Should-Similarity in LCA

Convex Should-Similarity <1, = gfp(F};,):

s Fy (n) tif
o st = tt
01
o t| = (sl Az.s’ = (I\x.t/ with ¢t Az.t’ and 5" ° t')).

Proposition
Convex should similarity is unsound in LCA. J

b1 =)\Qj‘l.Q b2 =)\331,33‘2.9 b3 =)\331,33‘2,1’3.9

S1 = amb b1 bg S9 = amb b1 (a.mb b2 bg)

® 59 <1y 511 S C Fp () with §:= {(s1,52), (b1,b1), (b3, b3), (b2, b1), (b1,)}
o s9 £y s1: Clsa] 1 but Clsy] | with C := (amb ([-] id) id) id

4/a

	Anhang

