

Applicative May- and Should-Simulation in the Call-by-Value Lambda Calculus with AMB

Manfred Schmidt-Schauß, David Sabel

Goethe-University, Frankfurt, Germany

RTA/TLCA '14, Vienna, Austria

- Semantics of higher-order programming languages
- Nondeterminism and concurrency
- Correctness of **program transformations** (e.g. compiler optimizations)
- Contextual equivalence as program semantics
- Requires proof techniques and tools

Contextual Equivalence for Nondeterminism

Contextual Equivalence, informally:

Programs are equal iff

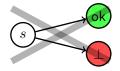
they have the same termination behavior in all program contexts

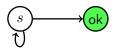
Nondeterminism requires:

- observe whether a program may terminate
- and observe whether a program should (or must) terminate.

Must- and Should termination:

- must: terminate (successfully) in any case
- should: No possibility to run into an error, weak divergences allowed





Programs s and t are **applicative bisimilar** if

- \boldsymbol{s} and \boldsymbol{t} "behave" identically using the following test:
- s terminates with value $v_s \iff t$ terminates with program v_t
- applying v_s and v_t to argument r: ($v_s r$) and ($v_t r$) are again applicative bisimilar

Advantages:

- reasoning about contexts is not necessary
- similarity of expressions can be proved by coinduction
- a sound similarity is a valuable proof tool

State of the art:

- several sound applicative similarities for deterministic and nondeterministic calculi exist (e.g. Abramsky '90; Howe '89; Ong '93; Lassen & Pitcher '00; Biernacki & Lenglet '12)
- there are some unsound cases:
 - Impure lambda calculi with storage (Mason & Talcott '91; Koutavas, Levy & Sumii '10)
 - Nondeterministic languages with recursive bindings (Schmidt-Schauß, S., Machkasova '11)
- none covers the combination of may- and should-convergence

Our goal

Find a sound applicative similarity for Should-Convergence

To keep things simple: we consider a basic language with nondetermism

Operational semantics of $(amb \ s \ t)$:

- evaluate s and t concurrently
- take the first result which becomes available

Equational semantics:

- amb $s \perp = s =$ amb $\perp s$ (bottom-avoidance)
- amb $s \ t = s$ or t if $s \neq \bot \neq t$ (nondeterminism)

Expressiveness:

- amb can encode a lot of other nondeterministic operators
- erratic choice: choice $s \ t = (amb \ (\lambda_{-}.s) \ (\lambda_{-}.t)) \ id$
- demonic choice: $dchoice \ s \ t = (amb \ (\lambda x, y.x) \ (\lambda x, y.y)) \ s \ t$
- parallel or, parallel convergence tester, bottom-avoiding list-merge, . . .

• The semantics of amb is studied since several decades

(e.g. McCarthy '63, Broy '86, Panangaden '88, Moran '98, Lassen & Moran '99, Lassen '06, Levy '07, S. & Schmidt-Schauß '08)

- Open question whether a **sound applicative similarity** for may- and must-convergence exists (Lassen '06)
- Negative answer for a typed calculus with may- and must-convergence (Levy '07)

Expressions:

$$s,t \in Expr ::= x \mid \lambda x.s \mid (s \ t) \mid (\texttt{amb} \ s \ t)$$

Evaluation contexts:

 $E \in \mathbb{E} ::= [\cdot] \mid (E \ s) \mid ((\lambda x.s) \ E) \mid (\texttt{amb} \ E \ s) \mid (\texttt{amb} \ s \ E)$

Call-by-value reduction:

Contextual Equivalence in LCA

May-convergence: $s \downarrow \text{ iff } \exists \lambda x.s' : s \xrightarrow{LCA,*} \lambda x.s'$
(we also write $s \downarrow \lambda x.s'$ in this case)Should-convergence: $s \Downarrow \text{ iff } \forall t : s \xrightarrow{LCA,*} t \implies t \downarrow$ Must-Divergence: $s \uparrow \text{ iff } \neg(s \downarrow)$ May-Divergence: $s \uparrow \text{ iff } \neg(s \downarrow)$ (= $\exists s' : s \xrightarrow{LCA,*} s' \land s' \uparrow$)

Contextual Preorder & Equivalence

For $\xi \in \{\downarrow, \Downarrow, \uparrow, \Uparrow\}$:

• $s \leq_{\xi} t$ iff for all C, C[s] and C[t] are closed: $C[s]\xi \implies C[t]\xi$

•
$$s \sim_{\xi} t$$
 iff $s \leq_{\xi} t$ and $t \leq_{\xi} s$

Contextual preorder: $s \leq_{LCA} t \text{ iff } s \leq_{\downarrow} t \land s \leq_{\Downarrow} t$

Contextual equivalence $s \sim_{LCA} t$ iff $s \sim_{\downarrow} t \land s \sim_{\Downarrow} t$

Applicative Similarity for May-Convergence in LCA

$$\begin{array}{ll} \eta^o &= \textit{open value-extension of } \eta : \\ & s \ \eta^o \ t \ \text{iff } \sigma(s) \ \eta \ \sigma(t) \ \text{for all closing value substitutions } \sigma \\ Expr^c &= \text{all closed expressions} \end{array}$$

May-Similarity $\preccurlyeq_{\downarrow}$:

Greatest fixpoint of $F_{\downarrow}: (Expr^c \times Expr^c) \to (Expr^c \times Expr^c)$ where

$$s \ F_{\downarrow}(\eta) \ t \ \text{ if } \ s \downarrow \lambda x.s' \implies \left(\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \ \eta^o \ t'
ight)$$

Lemma

$$s \preccurlyeq_{\downarrow} t \text{ iff } s \downarrow \lambda x.s' \implies (\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \preccurlyeq_{\downarrow}^{o} t')$$

GOETH

Applicative Similarity for May-Convergence in LCA

 $\begin{array}{l} \eta^o &= \textit{open value-extension of } \eta : \\ & s \; \eta^o \; t \; \text{iff} \; \sigma(s) \; \eta \; \sigma(t) \; \text{for all closing value substitutions } \sigma \\ Expr^c &= \text{all closed expressions} \end{array}$

May-Similarity $\preccurlyeq_{\downarrow}$:

Greatest fixpoint of $F_{\downarrow}: (Expr^c \times Expr^c) \to (Expr^c \times Expr^c)$ where

$$s \ F_{\downarrow}(\eta) \ t \ \text{ if } \ s \downarrow \lambda x.s' \implies \left(\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \ \eta^o \ t'
ight)$$

Lemma

$$s \preccurlyeq_{\downarrow} t \text{ iff } s \downarrow \lambda x.s' \implies (\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \preccurlyeq^o_{\downarrow} t')$$

Theorem

$$\preccurlyeq^o_\downarrow \subset \leq_\downarrow$$
 and $\preccurlyeq^o_\downarrow$ is a precongruence.

Proof: Soundness and precongruence: by Howe's method. Incompleteness: by counterexample (Lassen'98; Mann'05)

Should-Similarity ≼↑:

Greatest fixpoint of $F_{\uparrow}: (Expr^c \times Expr^c) \to (Expr^c \times Expr^c)$ where

- $s \ F_{\uparrow}(\eta) \ t$ if
 - $s \uparrow \Longrightarrow t \uparrow$
 - $t \preccurlyeq \downarrow s$
 - $s \downarrow \lambda x.s' \implies (\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \eta^o t').$

Theorem

$$\preccurlyeq^o_\uparrow \ \subset \ \leq_\uparrow \ = \ \geq_\downarrow$$
 and \preccurlyeq^o_\uparrow is a precongruence.

Proof: Soundness and precongruence: Howe's method (next slide) Incompleteness: by counterexample (in the paper)

Goal:

- show that \preccurlyeq^o_\uparrow is a precongruence
- implies that $\preccurlyeq^o_{\uparrow} \subseteq \leq_{\uparrow} (\text{since } s \preccurlyeq_{\uparrow} t \text{ implies } s \uparrow \Longrightarrow t \uparrow)$

Problems:

 ≼↑ is obviously reflexive and transitive, but there is no direct proof of compatibility with contexts

Howe's Method:

- build candidate \preccurlyeq_H which is compatible with contexts
- show that $\preccurlyeq_H = \preccurlyeq^o_\uparrow$
- implies \preccurlyeq_H and \preccurlyeq^o_\uparrow are precongruences

Precongruence Proof (2)

Candidate Relation \preccurlyeq_H

$$If x \preccurlyeq^o_\uparrow s then x \preccurlyeq_H s$$

2 If
$$\tau(s'_1, \ldots, s'_n) \preccurlyeq^o_\uparrow s$$
 with $s_i \preccurlyeq_H s'_i$, then $\tau(s_1, \ldots, s_n) \preccurlyeq_H s$.
(with $\tau = \lambda, @, amb)$

Theorem

 $\preccurlyeq_{\uparrow} = \preccurlyeq^c_H$

Proof sketch:

- $s \preccurlyeq_{\uparrow} t \implies s \preccurlyeq_{H}^{c} t$: Induction on the term structure of s
- $s \preccurlyeq_{H}^{c} t \implies s \preccurlyeq_{\uparrow} t$: Show that \preccurlyeq_{H}^{c} is F_{\uparrow} -dense i.e. $\preccurlyeq_{H}^{c} \subseteq F_{\uparrow}(\preccurlyeq_{H}^{c})$. Requires to show for $s \preccurlyeq_{H}^{c} t$:
 - $s \uparrow \Longrightarrow t \uparrow$
 - $t \preccurlyeq_{\downarrow} s$
 - $\bullet \ s \downarrow \lambda x.s' \implies \exists \lambda x.t': t \downarrow \lambda x.t' \text{ and } s' \preccurlyeq_H t'$

Proof uses $\preccurlyeq_H \subset \preccurlyeq_\downarrow \cap \succcurlyeq_\downarrow$ and that \preccurlyeq_\downarrow is a precongruence.

Main Theorem

For $\alpha \in \{\downarrow,\uparrow\}$:

- Mutual Similarity $\approx_{\alpha} := \preccurlyeq_{\alpha} \cap \succcurlyeq_{\alpha}$
- **Bisimilarity** \simeq_{α} : Greatest fixp. of G_{α} with $G_{\alpha}(\eta) = F_{\alpha}(\eta) \cap F_{\alpha}(\eta^{-1})$

Main Theorem

The similarities $\preccurlyeq^o_{\downarrow}$ and $\preccurlyeq^o_{\uparrow}$ are precongruences, the mutual similarities \approx^o_{\downarrow} , \approx^o_{\uparrow} , and the bisimilarity \simeq^o_{\uparrow} are congruences. Moreover, the following soundness results hold:

$$\mathbf{3} \simeq^o_{\uparrow} \subseteq \approx^o_{\uparrow} \subset \sim_{LCA}.$$

Note:
$$s \preccurlyeq^o_{\uparrow} t \implies s \approx_{\downarrow} t$$

 $\begin{array}{ll} (\lambda x.s) \ (\lambda x.t) & \sim_{LCA} & s[\lambda x.t/x] \\ (\operatorname{amb} \Omega \ s) & \sim_{LCA} & s \\ (\operatorname{amb} s \ s) & \sim_{LCA} & s \\ (\operatorname{amb} s \ s) & \sim_{LCA} & (\operatorname{amb} t \ s) \\ \operatorname{amb} s_1 \ (\operatorname{amb} s_2 \ s_3) & \sim_{LCA} & \operatorname{amb} (\operatorname{amb} s_1 \ s_2) \ s_3 \\ \underbrace{Y \ \lambda f.\lambda x.\operatorname{amb} x \ (f \ x)}_{\text{roughly: } f \ x \ = \ \operatorname{amb} x \ (f \ x)} & \sim_{LCA} \end{array}$

Other Definitions of Should-Similarity

- In the paper: other definitions of Should-Similarity
- some are shown to be **unsound**
- for some other definitions their soundness is open
- For instance:

Convex Should-Similarity $\preccurlyeq_{\uparrow_X} = \operatorname{gfp}(F_{\uparrow_X})$: $s \ F_{\uparrow_X}(\eta) \ t \ \operatorname{if}$ • $s \uparrow \implies t \uparrow$ • $t \preccurlyeq_{\downarrow} s$ • $t \Downarrow \implies (s \downarrow \lambda x.s' \implies (\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \ \eta^o \ t')).$

Proposition

Convex should similarity is **unsound** in *LCA*.

Expressions:

$$s,t \in Expr ::= x \mid \lambda x.s \mid (s \ t) \mid (\texttt{choice} \ s \ t)$$

Evaluation contexts:

 $E \in \mathbb{E} ::= [\cdot] \mid (E \ s) \mid ((\lambda x.s) \ E)$

Call-by-value reduction:

$$\begin{array}{ll} \text{(cbvbeta)} & E[((\lambda x.s) \ (\lambda y.t))] \xrightarrow{LCC} E[s[(\lambda y.t)/x]] \\ \text{(choicel)} & E[(\text{choice } s \ t)] & \xrightarrow{LCC} E[s] \\ \text{(choicer)} & E[(\text{choice } s \ t)] & \xrightarrow{LCC} E[t] \end{array}$$

May-Similarity in *LCC*, $\preccurlyeq_{\downarrow}$: $s \ F_{\downarrow}(\eta) \ t$ if:

• $s \downarrow \lambda x.s' \implies (\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \eta^o t').$

Convex Should-Similarity in *LCC*, $\preccurlyeq_{\uparrow_X} : s \ F_{\uparrow_X}(\eta) \ t$ if:

- $\bullet \ s \uparrow \implies t \uparrow$
- $\bullet \ t \preccurlyeq_{\downarrow} s$
- $t \Downarrow \Longrightarrow (s \downarrow \lambda x.s' \implies (\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \eta^o t'))$

Mutual Convex Should-Similarity: $\approx_{\uparrow_X} := \preccurlyeq_{\uparrow_X} \cap \succcurlyeq_{\uparrow_X}$

Theorem

$$\preccurlyeq^o_{\uparrow_X} \subset \geq_{LCC}$$
 and $\approx^o_{\uparrow_X} \subset \sim_{LCC}$.

Proof: Soundness by Howe's method Incompleteness by counterexample.

- **sound applicative similarities**, and bisimilarities for contextual equivalence with may- and should-convergence
- for call-by-value calculi with amb and choice
- proof by (adaption of) Howe's method

- Sound applicative similarity for nondeterministic call-by-need calculi with should-convergence (may extend results on may-similarity from Mann '05 and Mann & Schmidt-Schauß' 10)
- Sound applicative similarity for **concurrency**, e.g. process calculus *CHF* (S.& Schmidt-Schauß '11; '12) modeling Concurrent Haskell

Backup slides

Proposition

 $\approx^o_\downarrow \ \neq \ \sim_\downarrow$

- $Y = \lambda f.(\lambda x.f \ \lambda z.(x \ x \ z)) \ (\lambda x.f \ \lambda z.(x \ x \ z))$
- $Top = Y \ \lambda x, y.x$
- $F = \lambda f.\lambda z.choice \ (\lambda x.\Omega) \ ((\lambda x_1, x_2.x_1) \ (f \ z))$
- $Y \ F \ Id$ reduces to $\lambda x_1, \ldots, x_n \Omega$ for any $n \ge 1$.
- $Y \ F \ Id \sim_{\downarrow} Top.$
- Top ≼↓ Y F Id since the definition of ≼↓ requires to choose and fix n before recursively testing.

Counter Example: Incompleteness of Should-Similarity

Proposition

 $\preccurlyeq^o_\uparrow \neq \leq_\uparrow$

- $A = \text{choice } \Omega \ (\lambda x.A)$,
- $B_0 = Top$, $B_{i+1} = \lambda x$.choice Ω B_i ; and
- $B = \text{choice } \Omega$ (choice B_0 (choice B_1 ...)).
- $A \sim_{LCA} B$.
- $A \not\preccurlyeq_{\uparrow} B$ since
 - $A \preccurlyeq_{\uparrow} B \implies A \preccurlyeq_{\uparrow} B_i \text{ and } A \preccurlyeq_{\uparrow} B_i \implies A \preccurlyeq_{\uparrow} B_{i-1}$
 - Thus $A \preccurlyeq_{\uparrow} B_0$ is required, but $A \not\preccurlyeq_{\uparrow} Top$ since $A \uparrow$ while $Top \Downarrow$.

Counter Example: Unsoundness of Convex Should-Similarity in *LCA*

Convex Should-Similarity $\preccurlyeq_{\uparrow_X} = \operatorname{gfp}(F_{\uparrow_X})$: s $F_{\uparrow_Y}(\eta)$ t if

- $s\uparrow \implies t\uparrow$
- $t \preccurlyeq_{\downarrow} s$
- $t \Downarrow \Longrightarrow (s \downarrow \lambda x.s' \Longrightarrow (\exists \lambda x.t' \text{ with } t \downarrow \lambda x.t' \text{ and } s' \eta^o t')).$

Proposition

Convex should similarity is **unsound** in *LCA*.

• $s_2 \preccurlyeq_{\uparrow_X} s_1: S \subseteq F_{\uparrow_X}(S)$ with $S := \{(s_1, s_2), (b_1, b_1), (b_3, b_3), (b_2, b_1), (b_1, \Omega)\}$ • $s_2 \not\leq_{\uparrow} s_1: C[s_2] \uparrow$ but $C[s_1] \Downarrow$ with $C := (\text{amb } ([\cdot] id) id) id$

