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Introduction

the π-calculus (R. Milner, J. Parrow & D. Walker, 1992)
is a core language for mobile concurrent processes

it is a minimalistic model for concurrent programming
languages

lot of applications and variants exist:

Spi-calculus (cryptographic protocols)
modelling of business processes,
stochastic pi-calculus (biochemical processes),
join-calculus (distributed programming)
. . .

all these applications need reasoning tools for
process equivalence

lot of process equivalence notions are based on the
operational semantics of π-processes
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Introduction (2)

Evaluation of π-processes: Reduction semantics

reduction relation on processes for interaction of processes

closure by structural congruence used implicitly

Structural congruence

“natural” conversions, e.g. P1 ||| (P2 |||P3) ≡ (P2 |||P1) |||P3

hard to automatize

more freedom than necessary

high complexity, decidability is unknown, at least
EXPSPACE-hard
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Goals of this Paper

A new reduction strategy for the π-calculus:

make structural congruence explicit by reduction rules

only necessary rules are included

Correctness:

same equational semantics of processes

coarsest sensible semantics: barbed may- and should-testing

Advantages:

new strategy is easier to automatize, since all
transformations are explicit

may be used in deduction system for proving correctness of
process transformations
(Rau, PhD-thesis, in progress)
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Syntax of the Synchronous π-Calculus

Processes: P ::= π.P (action)
| P1 |||P2 (parallel composition)
| !P (replication)
| 0 (silent process)
| νx.P (name restriction)

Action prefixes: π ::= x(y) input
| x〈y〉 output

where x, y are names

Contexts: C ∈ C ::= [·] | π.C | C |||P | P |||C | !C | νx.C.
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Reduction Semantics (Classic Definition)

Reduction rule for interaction:

x(y).P |||x〈v〉.Q ia−→ P [v/y] |||Q

Reduction contexts: D ∈ D ::= [·] | D |||P | P |||D | νx.D

P
ia−→ Q

D[P ]
D,ia−−−→ D[Q]

D ∈ D
P ≡ P ′ ∧ P ′ D,ia−−−→ Q′ ∧Q′ ≡ Q

P
sr−→ Q

Closure w.r.t. reduction contexts Standard reduction

≡ is structural congruence (next slide)
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Structural Congruence ≡
Smallest congruence on processes satisfying the following axioms

P ≡ Q, if P =α Q
P1 ||| (P2 |||P3) ≡ (P1 |||P2) |||P3

P1 |||P2 ≡ P2 |||P1

P |||0 ≡ P
νz.νw.P ≡ νw.νz.P

νz.0 ≡ 0
νz.(P1 |||P2) ≡ P1 ||| νz.P2, if z 6∈ fn(P1)

!P ≡ P ||| !P

Remark (see Engelfriet & Gelsema 2004, 2007, Khomenko &
Meyer 2009, Schmidt-Schauß,S. & Rau 2013)

The decision problem whether for two π-processes P ≡ Q holds is
EXPSPACE-hard. Its decidability is still unknown.
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Structural Congruence as Reduction

(assocl) P1 ||| (P2 |||P3)
sca−−→ (P1 |||P2) |||P3

(assocr) (P1 |||P2) |||P3
sca−−→ P1 ||| (P2 |||P3)

(commute) P1 |||P2
sca−−→ P2 |||P1

(replunfold) !P
sca−−→ P ||| !P

(nuup) D[νz.P ]
sca−−→ νz.D[P ], if z 6∈ fn(D), [·] 6= D ∈ D

(nudown) νz.D[P ]
sca−−→ D[νz.P ], if z 6∈ fn(D), [·] 6= D ∈ D

(nuintro) P
sca−−→ νz.P if z 6∈ fn(P )

(nurem) νz.P
sca−−→ P if z 6∈ fn(P )

(replfold) P ||| !P
sca−−→ !P

(intro0l) P
sca−−→ 0 |||P

(intro0r) P
sca−−→ P |||0

(rem0r) P |||0
sca−−→ P

P
sca−−→ Q

C[P ]
C,sca−−−→ C[Q]

where C ∈ C
Lemma

C,sca,∗−−−−→ = ≡
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New Definition: Structural Reduction instead of Congruence

Restricted structural reduction:
sc−→ ⊂ sca−−→

(assocl) P1 ||| (P2 |||P3)
sc−→ (P1 |||P2) |||P3

(assocr) (P1 |||P2) |||P3
sc−→ P1 ||| (P2 |||P3)

(commute) P1 |||P2
sc−→ P2 |||P1

(replunfold) !P
sc−→ P ||| !P

(nuup) D[νz.P ]
sc−→ νz.D[P ], if z 6∈ fn(D), [·] 6= D ∈ D

P
sc−→ Q

D[P ]
D,sc−−−→ D[Q]

D ∈ D
P
D,sc,∗−−−−→ P ′ ∧ P ′ D,ia−−−→ Q′ ∧Q′ D,sc,∗−−−−→ Q

P
dsr−−→ Q

Structural standard reduction D-Standard Reduction

Goal: Show that
dsr−−→ induces the same semantics as

sr−→
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A Hierarchy of Process Equivalences

full strong labelled bisimilarity

⊂

full (weak) labelled bisimilarity

⊆
barbed congruence

⊂

barbed may- and should-testing

⊂

barbed may-testing
coarse

too coarse, e.g.
choice P 0 ∼ P

very fine, e.g.
choice P1 (choice P2 P3)
6∼ choice (choice P1 P2) P3

fine(see Fournet & Gonthier 2005)
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May- and Should-Testing

Process P has a barb on x:

P �x: P has an open input on x (P = νX .(x(y).P ′ |||P ′′), x 6∈ X )

P �x: P has an open output on x (P = νX .(x〈y〉.P ′ |||P ′′), x 6∈ X )

May-barb and Should-barb: For µ ∈ {x, x},
P may have a barb on µ: P ↓µ iff ∃Q : P

sr,∗−−→ Q ∧ Q ≡ Q′ ∧ Q′ �µ

P should have a barb on µ: P ⇓µ iff ∀Q : P
sr,∗−−→ Q =⇒ Q↓µ.

Barbed May- and Should-Testing Equivalence

P ∼ Q iff P - Q and Q - P where

P - Q iff P -may Q and P -should Q

P -may Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C: C[P ]↓µ =⇒ C[Q]↓µ
P -shouldQ iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C: C[P ]⇓µ =⇒ C[Q]⇓µ
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May- and Should-Testing w.r.t.
dsr−−→

Barbed May- and Should-Testing Equivalence w.r.t.
dsr−−→

P ∼D Q iff P -D Q and Q -D P where

P -D Q iff P -D,may Q and P -D,should Q

P -D,may Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C: C[P ]↓D,µ =⇒ C[Q]↓D,µ
P -D,should Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C: C[P ]⇓D,µ =⇒ C[Q]⇓D,µ

May-barb and Should-barb w.r.t.
dsr−−→: For µ ∈ {x, x},

May: P ↓D,µ iff ∃Q : P
dsr,∗−−−→Q ∧ Q

D,sc,∗−−−−→Q′ ∧ Q′ �µ

Should: P ⇓D,µ iff ∀Q : P
dsr,∗−−−→Q =⇒ Q↓D,µ.
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Main Result

Theorem

∼ = ∼D

Proof:

It suffices to show ↓µ = ↓D,µ and⇓µ = ⇓D,µ.

We only consider may-observation ↓µ = ↓D,µ
(should-observation works analogously)

Trivial case: ↓D,µ ⊆ ↓µ
Remaining case: ↓µ ⊆ ↓D,µ
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Proof Sketch for ↓µ ⊆ ↓D,µ
Given reduction sequence: P ≡ D,ia−−−→≡ D,ia−−−→ . . .

D,ia−−−→≡Q and Q �µ

1) make ≡ explicit:

P
C,sca,∗−−−−→ D,ia−−−→ C,sca,∗−−−−→ D,ia−−−→ . . .

D,ia−−−→ C,sca,∗−−−−→Q and Q �µ

2) split
C,sca−−−→ into internal conversions

isca−−→ and
D,sc−−−→ conversions

(internal conversions
isca−−−→ :=

C,sca−−−→ \ D,sc−−−→)

P
isca∨D,sc,∗−−−−−−−→ D,ia−−−→ isca∨D,sc,∗−−−−−−−→ D,ia−−−→ . . .

D,ia−−−→ isca∨D,sc,∗−−−−−−−→Q and Q �µ

3) shift internal conversions to the right:

P
D,sc,∗−−−−→ D,ia−−−→ D,sc,∗−−−−→ D,ia−−−→ . . .

D,ia−−−→ D,sc,∗−−−−→ isca,∗−−−→Q and Q �µ

4) apply base case lemma: Q′ ≡ Q ∧Q �µ iff Q′
D,sc,∗−−−−→ Q′′ ∧Q′′ �µ.

P
D,sc,∗−−−−→ D,ia−−−→ D,sc,∗−−−−→ D,ia−−−→ . . .

D,ia−−−→ D,sc,∗−−−−→
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Proof Sketch for ↓µ ⊆ ↓D,µ (2)

Main Lemma (Shift internal conversions to the end)

If P1
C,sca∨D,ia−−−−−−−→ P2

C,sca∨D,ia−−−−−−−→ . . .
C,sca∨D,ia−−−−−−−→ Pn

then P1
D,sc∨D,ia−−−−−−→ Q1

D,sc∨D,ia−−−−−−→ . . .
D,sc∨D,ia−−−−−−→ Qm

isca,∗−−−→ Pn

Proof: Induction on the given sequence, and inspection of
overlappings of the forms:

P
isca−−→ P ′

D,sc−−−→ P ′′

P
isca−−→ P ′

D,ia−−−→ P ′′
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Shifting Internal Conversions to the End

All possible cases:

isca−−→ .
D,sc∨ia−−−−−→  

D,sc∨ia−−−−−→ .
isca−−→ .

isca−−→

for k ≥ 1

(1)

isca−−→ .
D,sc∨ia−−−−−→  

D,sc∨ia,n−−−−−−→ .
isca−−→ for any n ≥ 1 (2)

isca−−→ .
D,sc∨ia−−−−−→  ε (where ε represents the empty string) (3)

isca−−→ .
D,sc∨ia−−−−−→  

isca−−→ (4)

isca−−→ .
D,sc∨ia−−−−−→  

D,sc∨ia−−−−−→ (5)

where
isca〈k〉−−−−→ =

isca−−→-transformation at replication depth k
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Automatic Proof

Encode the shifting as a term rewriting system:

isca(S(K), dscdia(X)) → dscdia(isca(K, isca(S(K),X))) (1)
isca(K, dscdia(X)) → gen(S(N), isca(K,X)) (2)

gen(S(N),X) → dscdia(gen(N,X)) (2′)
gen(Z,X) → X (2′′)

isca(Z, dscdia(X)) → X (3)
isca(Z, dscdia(X)) → isca(Z,X) (4)
isca(Z, dscdia(X)) → dscdia(Z,X) (5)

Numbers are encoded by Peano-numbers S(·),Z.

TRS with free variables on the right hand side

AProVE shows innermost-termination, CeTA verifies the proof

Termination proof implies that an induction measure exists

Extends the encoding approach for automating correctness proofs for
program transformations in Rau, S., Schmidt-Schauß, 2012
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Conclusion

new rewriting semantics for the π-calculus

conversion w.r.t. structural congruence are explicit by
rewriting

restricted set of conversions is sufficient

without any semantic difference w.r.t. barbed may- and
should-testing
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Further work

use the new strategy for automated correctness proofs of
process transformations

extensions and variants of the π-calculus

look for other notions of process equivalence
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