Structural Rewriting in the π-Calculus

David Sabel

Goethe-University, Frankfurt, Germany

WPTE'14, Vienna, Austria

- the π-calculus (R. Milner, J. Parrow \& D. Walker, 1992) is a core language for mobile concurrent processes
- it is a minimalistic model for concurrent programming languages
- lot of applications and variants exist:
- Spi-calculus (cryptographic protocols)
- modelling of business processes,
- stochastic pi-calculus (biochemical processes),
- join-calculus (distributed programming)
- . . .
- all these applications need reasoning tools for process equivalence
- lot of process equivalence notions are based on the operational semantics of π-processes

Evaluation of π-processes: Reduction semantics

- reduction relation on processes for interaction of processes
- closure by structural congruence used implicitly

Structural congruence

- "natural" conversions, e.g. $P_{1}\left|\left(P_{2} \mid P_{3}\right) \equiv\left(P_{2} \mid P_{1}\right)\right| P_{3}$
- hard to automatize
- more freedom than necessary
- high complexity, decidability is unknown, at least EXPSPACE-hard

A new reduction strategy for the π-calculus:

- make structural congruence explicit by reduction rules
- only necessary rules are included

Correctness:

- same equational semantics of processes
- coarsest sensible semantics: barbed may- and should-testing

Advantages:

- new strategy is easier to automatize, since all transformations are explicit
- may be used in deduction system for proving correctness of process transformations (Rau, PhD-thesis, in progress)

Action prefixes: π

$$
\begin{array}{cc}
::= & x(y) \\
\mid \quad \bar{x}\langle y\rangle
\end{array}
$$

(action)
(parallel composition)
(replication)
(silent process)
(name restriction)
input
output
where x, y are names
Contexts: $C \in \mathcal{C}::=[\cdot]|\pi . C| C|P| P|C|!C \mid \nu x . C$.

Reduction Semantics (Classic Definition)

Reduction rule for interaction:

$$
x(y) \cdot P \mathbf{|} \bar{x}\langle v\rangle \cdot Q \xrightarrow{i a} P[v / y] \mathbf{I} Q
$$

Reduction contexts: $\mathbf{D} \in \mathcal{D}::=[\cdot]|\mathbf{D}| P|P| \mathbf{D} \mid \nu x . \mathbf{D}$

$$
\frac{P \xrightarrow{i a} Q}{\mathbf{D}[P] \xrightarrow{\mathcal{D}, i a} \mathbf{D}[Q]} \mathbf{D} \in \mathcal{D} \quad \xrightarrow[{P \equiv P^{\prime} \wedge P^{\prime} \xrightarrow{\mathcal{D}, i a} Q^{\prime} \wedge Q^{\prime} \equiv} Q]{P \xrightarrow{s r} Q}
$$

Closure w.r.t. reduction contexts Standard reduction
\equiv is structural congruence (next slide)

Structural Congruence \equiv

Smallest congruence on processes satisfying the following axioms

$$
\begin{aligned}
P & \equiv Q, \text { if } P={ }_{\alpha} Q \\
P_{1} \mid\left(P_{2} \mid P_{3}\right) & \equiv\left(P_{1} \mid P_{2}\right) \mid P_{3} \\
P_{1} \mid P_{2} & \equiv P_{2} \mid P_{1} \\
P \mid \mathbf{0} & \equiv P \\
\nu z . \nu w . P & \equiv \nu w . \nu z . P \\
\nu z .0 & \equiv \mathbf{0} \\
\nu z .\left(P_{1} \mid P_{2}\right) & \equiv P_{1} \mid \nu z . P_{2}, \text { if } z \notin \mathrm{fn}\left(P_{1}\right) \\
!P & \equiv P \mid!P
\end{aligned}
$$

Remark (see Engelfriet \& Gelsema 2004, 2007, Khomenko \& Meyer 2009, Schmidt-Schauß,S. \& Rau 2013)
The decision problem whether for two π-processes $P \equiv Q$ holds is EXPSPACE-hard. Its decidability is still unknown.

$\frac{P \xrightarrow{s c a} Q}{C[P] \xrightarrow{\mathcal{C}, s c a} C[Q]}$ where $C \in \mathcal{C}$

Lemma

$$
\xrightarrow{\mathcal{C}, s c a, *}=\equiv
$$

New Definition: Structural Reduction instead of Congruence
Restricted structural reduction: $\xrightarrow{s c} \subset \xrightarrow{s c a}$

$$
\begin{aligned}
& \text { (assocl) } \quad P_{1}\left|\left(P_{2} \mid P_{3}\right) \xrightarrow{s c}\left(P_{1} \mid P_{2}\right)\right| P_{3} \\
& \text { (assocr) } \quad\left(P_{1} \mid P_{2}\right)\left|P_{3} \xrightarrow{s c} P_{1}\right|\left(P_{2} \mid P_{3}\right) \\
& \text { (commute) } \quad P_{1}\left|P_{2} \xrightarrow{s c} P_{2}\right| P_{1} \\
& \text { (replunfold) } \\
& !P \xrightarrow{s c} P \boldsymbol{P}!P \\
& \text { (nuup) } \\
& \mathbf{D}[\nu z . P] \xrightarrow{s c} \nu z . \mathbf{D}[P], \text { if } z \notin \mathrm{fn}(\mathbf{D}),[\cdot] \neq \mathbf{D} \in \mathcal{D} \\
& \underset{\mathbf{D}[P] \xrightarrow{P \xrightarrow{\mathcal{D}, s c}} \mathbf{D}[Q]}{\stackrel{s c}{ }} \mathbf{D} \in \mathcal{D} \quad \xrightarrow{P \xrightarrow{\mathcal{D}, s c, *} P^{\prime} \wedge P^{\prime} \xrightarrow{\mathcal{D}, i a} Q^{\prime} \wedge Q^{\prime} \xrightarrow{\mathcal{D}, s c, *} Q} \quad P \xrightarrow{P \xrightarrow{d s r} Q}
\end{aligned}
$$

Structural standard reduction
\mathcal{D}-Standard Reduction

New Definition: Structural Reduction instead of Congruence
Restricted structural reduction: $\xrightarrow{s c} \subset \xrightarrow{s c a}$

$$
\begin{array}{lr}
\text { (assocl) } & P_{1}\left|\left(P_{2} \mid P_{3}\right) \xrightarrow{s c}\left(P_{1} \mid P_{2}\right)\right| P_{3} \\
\text { (assocr) } & \left(P_{1} \mid P_{2}\right)\left|P_{3} \xrightarrow{s c} P_{1}\right|\left(P_{2} \mid P_{3}\right) \\
\text { (commute) } & P_{1}\left|P_{2} \xrightarrow{s c} P_{2}\right| P_{1} \\
\text { (replunfold) } & !P \xrightarrow{s c} P \mid!P \\
\text { (nuup) } & \mathbf{D}[\nu z . P] \xrightarrow{s c} \nu z . \mathbf{D}[P], \text { if } z \notin \mathrm{fn}(\mathbf{D}),[\cdot] \neq \mathbf{D} \in \mathcal{D}
\end{array}
$$

$$
\frac{P \xrightarrow{s c} Q}{\mathbf{D}[P] \xrightarrow{\mathcal{D}, s c} \mathbf{D}[Q]} \mathbf{D} \in \mathcal{D} \quad \xrightarrow{P \xrightarrow{\mathcal{D}, s c, *} P^{\prime} \wedge P^{\prime} \xrightarrow{\mathcal{D}, i a} Q^{\prime} \wedge Q^{\prime} \xrightarrow{\mathcal{D}, s c, *} Q} P_{\xrightarrow{d s r} Q}^{Q}
$$

Structural standard reduction
\mathcal{D}-Standard Reduction

Goal: Show that $\xrightarrow{d s r}$ induces the same semantics as $\xrightarrow{s r}$

A Hierarchy of Process Equivalences

(see Fournet \& Gonthier 2005)
full strong labelled bisimilarity

full (weak) labelled bisimilarity

barbed congruence
barbed may- and should-testing

A Hierarchy of Process Equivalences

(see Fournet \& Gonthier 2005)

full strong labelled bisimilarity
full (weak) labelled bisimilarity
very fine, e.g. choice P_{1} (choice $P_{2} P_{3}$) \nsim choice (choice $P_{1} P_{2}$) P_{3}

```
                                    I\cap
    barbed congruence
```

 \(\cap\)
 barbed may- and should-testing

A Hierarchy of Process Equivalences

(see Fournet \& Gonthier 2005) full strong labelled bisimilarity fine

	\cap
	full (weak) labelled bisimilarity
very fine, e.g.	$1 \cap$
choice P_{1} (choice $P_{2} P_{3}$)	barbed congruence
χ choice (choice $P_{1} P_{2}$) P_{3}	barbed congruence
	\cap
	barbed may- and should-testing

A Hierarchy of Process Equivalences

(see Fournet \& Gonthier 2005) full strong labelled bisimilarity fine

	\cap
	full (weak) labelled bisimilarity
	$1 \cap$
very fine, e.g. choice P_{1} (choice $P_{2} P_{3}$)	
	barbed congruence
χ choice (choice $P_{1} P_{2}$) P_{3}	\cap
	barbed may- and should-testing
	\cap
too coarse, e.g. choice $P \mathbf{0} \sim P$	barbed may-testing

May- and Should-Testing

Process P has a barb on x :

- $P \Gamma^{x}: P$ has an open input on $x \quad\left(P=\nu \mathcal{X} \cdot\left(x(y) \cdot P^{\prime} \mid P^{\prime \prime}\right), x \notin \mathcal{X}\right)$
- $P \upharpoonright^{\bar{x}}: P$ has an open output on $x \quad\left(P=\nu \mathcal{X} .\left(\bar{x}\langle y\rangle . P^{\prime} \mid P^{\prime \prime}\right), x \notin \mathcal{X}\right)$

May- and Should-Testing

Process P has a barb on x :

- $P \Gamma^{x}: P$ has an open input on $x \quad\left(P=\nu \mathcal{X} \cdot\left(x(y) \cdot P^{\prime} \mid P^{\prime \prime}\right), x \notin \mathcal{X}\right)$
- $P \upharpoonright^{\bar{x}}: P$ has an open output on $x \quad\left(P=\nu \mathcal{X} .\left(\bar{x}\langle y\rangle . P^{\prime} \mid P^{\prime \prime}\right), x \notin \mathcal{X}\right)$

May-barb and Should-barb: For $\mu \in\{x, \bar{x}\}$,

- P may have a barb on $\mu: P \downarrow_{\mu}$ iff $\exists Q: P \xrightarrow{s r, *} Q \wedge Q \equiv Q^{\prime} \wedge Q^{\prime} \Gamma^{\mu}$
- P should have a barb on $\mu: P \Downarrow_{\mu}$ iff $\forall Q: P \xrightarrow{s r, *} Q \Longrightarrow Q \downarrow_{\mu}$.

Process P has a barb on x :

- $P \Gamma^{x}: P$ has an open input on $x \quad\left(P=\nu \mathcal{X} \cdot\left(x(y) \cdot P^{\prime} \mid P^{\prime \prime}\right), x \notin \mathcal{X}\right)$
- $P \upharpoonright^{\bar{x}}: P$ has an open output on $x \quad\left(P=\nu \mathcal{X}\right.$. $\left.\left(\bar{x}\langle y\rangle . P^{\prime} \mid P^{\prime \prime}\right), x \notin \mathcal{X}\right)$

May-barb and Should-barb: For $\mu \in\{x, \bar{x}\}$,

- P may have a barb on $\mu: P \downarrow_{\mu}$ iff $\exists Q: P \xrightarrow{s r, *} Q \wedge Q \equiv Q^{\prime} \wedge Q^{\prime} \upharpoonright^{\mu}$
- P should have a barb on $\mu: P \Downarrow_{\mu}$ iff $\forall Q: P \xrightarrow{s r, *} Q \Longrightarrow Q \downarrow_{\mu}$.

Barbed May- and Should-Testing Equivalence

$$
P \sim Q \text { iff } P \precsim Q \text { and } Q \precsim P \text { where }
$$

$P \precsim Q \quad$ iff $P \precsim$ may Q and $P \precsim_{\text {should }} Q$
$P \precsim_{\text {may }} Q$ iff $\forall x \in \mathcal{N}, \mu \in\{x, \bar{x}\}, C \in \mathcal{C}: C[P] \downarrow_{\mu} \Longrightarrow C[Q] \downarrow_{\mu}$
$P \precsim_{\text {should }} Q$ iff $\forall x \in \mathcal{N}, \mu \in\{x, \bar{x}\}, C \in \mathcal{C}: C[P] \Downarrow_{\mu} \Longrightarrow C[Q] \Downarrow_{\mu}$

Barbed May- and Should-Testing Equivalence w.r.t. $\xrightarrow{d s r}$ $P \sim_{\mathcal{D}} Q$ iff $P \precsim_{\mathcal{D}} Q$ and $Q \precsim_{\mathcal{D}} P$ where
$P \precsim_{\mathcal{D}} Q \quad$ iff $P \precsim_{\mathcal{D} \text {, may }} Q$ and $P \precsim_{\mathcal{D} \text {,should }} Q$
$P \precsim_{\mathcal{D} \text {,may }} Q \quad$ iff $\forall x \in \mathcal{N}, \mu \in\{x, \bar{x}\}, C \in \mathcal{C}: C[P] \downarrow_{\mathcal{D}, \mu} \Longrightarrow C[Q] \downarrow_{\mathcal{D}, \mu}$
$P \precsim_{\mathcal{D} \text {,should }} Q$ iff $\forall x \in \mathcal{N}, \mu \in\{x, \bar{x}\}, C \in \mathcal{C}: C[P] \Downarrow_{\mathcal{D}, \mu} \Longrightarrow C[Q] \Downarrow_{\mathcal{D}, \mu}$
May-barb and Should-barb w.r.t. $\xrightarrow{d s r}$: For $\mu \in\{x, \bar{x}\}$,

- May: $P \downarrow_{\mathcal{D}, \mu}$ iff $\exists Q: P \xrightarrow{d s r, *} Q \wedge Q \xrightarrow{\mathcal{D}, s c, *} Q^{\prime} \wedge Q^{\prime} \Gamma^{\mu}$
- Should: $P \Downarrow_{\mathcal{D}, \mu}$ iff $\forall Q: P \xrightarrow{d s r, *} Q \Longrightarrow Q \downarrow_{\mathcal{D}, \mu}$.

Theorem

$$
\sim=\sim_{\mathcal{D}}
$$

Proof:

- It suffices to show $\downarrow_{\mu}=\downarrow_{\mathcal{D}, \mu}$ and $\Downarrow_{\mu}=\Downarrow_{\mathcal{D}, \mu}$.
- We only consider may-observation $\downarrow_{\mu}=\downarrow_{\mathcal{D}, \mu}$ (should-observation works analogously)
- Trivial case: $\downarrow_{\mathcal{D}, \mu} \subseteq \downarrow_{\mu}$
- Remaining case: $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q \text { and } Q \Gamma^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \upharpoonright^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

2) split $\xrightarrow{\mathcal{C}, s c a}$ into internal conversions $\xrightarrow{i s c a}$ and $\xrightarrow{\mathcal{D}, s c}$ conversions (internal conversions $\xrightarrow{i s c a}:=\xrightarrow{\mathcal{C}, s c a} \backslash \xrightarrow{\mathcal{D}, s c}$)

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \upharpoonright^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{D, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

2) split $\xrightarrow{\mathcal{C}, s c a}$ into internal conversions $\xrightarrow{i s c a}$ and $\xrightarrow{\mathcal{D}, s c}$ conversions (internal conversions $\xrightarrow{i s c a}:=\xrightarrow{\mathcal{C}, s c a} \backslash \xrightarrow{\mathcal{D}, s c}$)

$$
P \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} Q \text { and } Q \Gamma^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \upharpoonright^{\mu}
$$

2) split $\xrightarrow{\mathcal{C}, s c a}$ into internal conversions $\xrightarrow{i s c a}$ and $\xrightarrow{\mathcal{D}, s c}$ conversions (internal conversions $\xrightarrow{i s c a}:=\xrightarrow{\mathcal{C}, s c a} \backslash \xrightarrow{\mathcal{D}, s c}$)

$$
P \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} Q \text { and } Q \Gamma^{\mu}
$$

3) shift internal conversions to the right:

$$
P \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} Q \text { and } Q \Gamma^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \stackrel{\mathcal{D}, i a}{\longrightarrow} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

2) split $\xrightarrow{\mathcal{C}, s c a}$ into internal conversions $\xrightarrow{i s c a}$ and $\xrightarrow{\mathcal{D}, s c}$ conversions (internal conversions $\xrightarrow{i s c a}:=\xrightarrow{\mathcal{C}, s c a} \backslash \xrightarrow{\mathcal{D}, s c}$)

$$
P \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} Q \text { and } Q \Gamma^{\mu}
$$

3) shift internal conversions to the right:

$$
P \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{i s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \stackrel{\mathcal{D}, i a}{\longrightarrow} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

2) split $\xrightarrow{\mathcal{C}, s c a}$ into internal conversions $\xrightarrow{i s c a}$ and $\xrightarrow{\mathcal{D}, s c}$ conversions (internal conversions $\xrightarrow{i s c a}:=\xrightarrow{\mathcal{C}, s c a} \backslash \xrightarrow{\mathcal{D}, s c}$)

$$
P \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} Q \text { and } Q \Gamma^{\mu}
$$

3) shift internal conversions to the right:

$$
P \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime} \xrightarrow{i s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

2) split $\xrightarrow{\mathcal{C}, s c a}$ into internal conversions $\xrightarrow{i s c a}$ and $\xrightarrow{\mathcal{D}, s c}$ conversions (internal conversions $\xrightarrow{i s c a}:=\xrightarrow{\mathcal{C}, s c a} \backslash \xrightarrow{\mathcal{D}, s c}$)

$$
P \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} Q \text { and } Q \Gamma^{\mu}
$$

3) shift internal conversions to the right:

$$
P \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime} \xrightarrow{i s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

4) apply base case lemma: $Q^{\prime} \equiv Q \wedge Q \upharpoonright^{\mu}$ iff $Q^{\prime} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime \prime} \wedge Q^{\prime \prime} \upharpoonright^{\mu}$.

$$
P \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime} \xrightarrow{i s c a, *} Q \text { and } Q \upharpoonright^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

2) split $\xrightarrow{\mathcal{C}, s c a}$ into internal conversions $\xrightarrow{i s c a}$ and $\xrightarrow{\mathcal{D}, s c}$ conversions (internal conversions $\xrightarrow{i s c a}:=\xrightarrow{\mathcal{C}, s c a} \backslash \xrightarrow{\mathcal{D}, s c}$)

$$
P \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} Q \text { and } Q \upharpoonright^{\mu}
$$

3) shift internal conversions to the right:

$$
P \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime} \xrightarrow{i s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

4) apply base case lemma: $Q^{\prime} \equiv Q \wedge Q \upharpoonright^{\mu}$ iff $Q^{\prime} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime \prime} \wedge Q^{\prime \prime} \upharpoonright^{\mu}$.

$$
P \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime} \equiv Q \text { and } Q \upharpoonright^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$

Given reduction sequence: $P \equiv \xrightarrow{\mathcal{D}, i a} \equiv \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \equiv Q$ and $Q \upharpoonright^{\mu}$

1) make \equiv explicit:

$$
P \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{C}, s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

2) split $\xrightarrow{\mathcal{C}, s c a}$ into internal conversions $\xrightarrow{i s c a}$ and $\xrightarrow{\mathcal{D}, s c}$ conversions (internal conversions $\xrightarrow{i s c a}:=\xrightarrow{\mathcal{C}, s c a} \backslash \xrightarrow{\mathcal{D}, s c}$)

$$
P \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{i s c a \vee \mathcal{D}, s c, *} Q \text { and } Q \Gamma^{\mu}
$$

3) shift internal conversions to the right:

$$
P \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime} \xrightarrow{i s c a, *} Q \text { and } Q \Gamma^{\mu}
$$

4) apply base case lemma: $Q^{\prime} \equiv Q \wedge Q \upharpoonright^{\mu} \quad$ iff $\quad Q^{\prime} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime \prime} \wedge Q^{\prime \prime} \upharpoonright^{\mu}$.

$$
P \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} \xrightarrow{\mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, i a} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime} \xrightarrow{\mathcal{D}, s c, *} Q^{\prime \prime} \text { and } Q^{\prime \prime} \upharpoonright^{\mu}
$$

Proof Sketch for $\downarrow_{\mu} \subseteq \downarrow_{\mathcal{D}, \mu}$ (2)

Main Lemma (Shift internal conversions to the end)

If $P_{1} \xrightarrow{\mathcal{C}, s c a \vee \mathcal{D}, i a} P_{2} \xrightarrow{\mathcal{C}, s c a \vee \mathcal{D}, i a} \ldots \xrightarrow{\mathcal{C}, s c a \vee \mathcal{D}, i a} P_{n}$
then $P_{1} \xrightarrow{\mathcal{D}, s c \vee \mathcal{D}, i a} Q_{1} \xrightarrow{\mathcal{D}, s c \vee \mathcal{D}, i a} \ldots \xrightarrow{\mathcal{D}, s c \vee \mathcal{D}, i a} Q_{m} \xrightarrow{i s c a, *} P_{n}$
Proof: Induction on the given sequence, and inspection of overlappings of the forms:

- $P \xrightarrow{i s c a} P^{\prime} \xrightarrow{\mathcal{D}, s c} P^{\prime \prime}$
- $P \xrightarrow{i s c a} P^{\prime} \xrightarrow{\mathcal{D}, i a} P^{\prime \prime}$

All possible cases:

$$
\begin{align*}
& \xrightarrow{i s c a} . \xrightarrow{\mathcal{D}, s c \vee i a} \xrightarrow{\mathcal{D}, s c \vee i a} \\
& \xrightarrow{i s c a} . \xrightarrow{\mathcal{D}, s c \vee i a} \rightsquigarrow \xrightarrow{\mathcal{D}, s c \vee i a, n} . \xrightarrow{i s c a} \text { for any } n \geq 1 \tag{2}\\
& \xrightarrow{i s c a} . \xrightarrow{\mathcal{D}, s c \vee i a} \rightsquigarrow \varepsilon \text { (where } \varepsilon \text { represents the empty string) } \tag{3}\\
& \xrightarrow{i s c a} . \xrightarrow{\mathcal{D}, s c \vee i a} \tag{4}\\
& \xrightarrow{i s c a} . \xrightarrow{\mathcal{D}, s c \vee i a} \tag{5}
\end{align*}
$$

Shifting Internal Conversions to the End

All possible cases:

$$
\begin{align*}
& \xrightarrow{i s c a\langle k\rangle} . \xrightarrow{\mathcal{D}, s c \vee i a} \rightsquigarrow \xrightarrow{\mathcal{D}, s c \vee i a} . \xrightarrow{i s c a\langle k-1\rangle} . \xrightarrow{i s c a\langle k\rangle} \text { for } k \geq 1 \tag{1}\\
& \xrightarrow{i s c a\langle k\rangle} . \xrightarrow{\mathcal{D}, s c \vee i a} \rightsquigarrow \xrightarrow{\mathcal{D}, s c \vee i a, n} . \xrightarrow{i s c a\langle k\rangle} \text { for } k \geq 0 \text { and any } n \geq 1 \tag{2}\\
& \xrightarrow{i s c a\langle 0\rangle} . \xrightarrow{\mathcal{D}, s c \vee i a} \rightsquigarrow \varepsilon \text { (where } \varepsilon \text { represents the empty string) } \tag{3}\\
& \xrightarrow{i s c a\langle 0\rangle} . \xrightarrow{\mathcal{D}, s c \vee i a} \tag{4}\\
& \xrightarrow{i s c a\langle 0\rangle} . \xrightarrow{\mathcal{D}, s c \vee i a} \rightsquigarrow \xrightarrow{\mathcal{D}, s c \vee i a} \tag{5}
\end{align*}
$$

where $\xrightarrow{i s c a\langle k\rangle}=\xrightarrow{i s c a}$-transformation at replication depth k

Automatic Proof

Encode the shifting as a term rewriting system:

$$
\left.\begin{array}{rl}
i s c a(S(\mathrm{~K}), \operatorname{dscdia}(\mathrm{X})) & \rightarrow \operatorname{dscdia}(i s c a(\mathrm{~K}, \operatorname{isca}(S(\mathrm{~K}), \mathrm{X}))) \\
i s c a(\mathrm{~K}, \operatorname{dscdia}(\mathrm{X})) & \rightarrow \operatorname{gen}(S(\mathrm{~N}), i s c a(\mathrm{~K}, \mathrm{X})) \\
\operatorname{gen}(S(\mathrm{~N}), \mathrm{X}) & \rightarrow \operatorname{dscdia}(\operatorname{gen}(\mathrm{N}, \mathrm{X})) \\
\operatorname{gen}(Z, \mathrm{X}) & \rightarrow \mathrm{X} \\
i s c a(Z, d s c d i a & \mathrm{X}))
\end{array}\right) \mathrm{X},\left(2^{\prime}\right)
$$

- Numbers are encoded by Peano-numbers $S(\cdot), Z$.
- TRS with free variables on the right hand side
- AProVE shows innermost-termination, CeTA verifies the proof
- Termination proof implies that an induction measure exists
- Extends the encoding approach for automating correctness proofs for program transformations in Rau, S., Schmidt-Schauß, 2012
- new rewriting semantics for the π-calculus
- conversion w.r.t. structural congruence are explicit by rewriting
- restricted set of conversions is sufficient
- without any semantic difference w.r.t. barbed may- and should-testing
- use the new strategy for automated correctness proofs of process transformations
- extensions and variants of the π-calculus
- look for other notions of process equivalence

