Observing Success in the π-Calculus

David Sabel and Manfred Schmidt-Schauß

Goethe-University, Frankfurt, Germany

WPTE'15
Warsaw, Poland
2 July, 2015

Motivation

π-calculus ([Milner et al.'92, Milner'99])

- model for concurrent processes with message passing
- several process equivalences (see [Sangiorgi \& Walker'01]), mainly bisimulations which observe input and output capabilities
- bisimulations are usually very fine-grained

Motivation

π-calculus ([Milner et al.'92, Milner'99])

- model for concurrent processes with message passing
- several process equivalences (see [Sangiorgi \& Walker'01]), mainly bisimulations which observe input and output capabilities
- bisimulations are usually very fine-grained
(Concurrent) λ-calculi
- canonical, very coarse-grained Morris' style contextual equivalence
- based on observing successful (may- and should-) termination
- no notion of channels and input / output

Motivation

π-calculus ([Milner et al.'92, Milner'99])

- model for concurrent processes with message passing
- several process equivalences (see [Sangiorgi \& Walker'01]), mainly bisimulations which observe input and output capabilities
- bisimulations are usually very fine-grained
(Concurrent) λ-calculi
- canonical, very coarse-grained Morris' style contextual equivalence
- based on observing successful (may- and should-) termination
- no notion of channels and input / output

hard to compare both worlds

(e.g. required for expressivity results)

Our Contributions

- Morris' style contextual equivalence \sim_{c} for the π-calculus
$\boldsymbol{r} \boldsymbol{r}$ requires a notion of success
\boldsymbol{r} extend the π-calculus by a constant Stop to denote success (similar as [Gorla'10, Peters et al.'14])

Our Contributions

- Morris' style contextual equivalence \sim_{c} for the π-calculus
$\boldsymbol{r} \boldsymbol{r}$ requires a notion of success
\boldsymbol{m} extend the π-calculus by a constant Stop to denote success (similar as [Gorla'10, Peters et al.'14])
- tools and techniques to prove contextual equivalences
\boldsymbol{r} a context lemma
\rightarrow a sound similarity

Our Contributions

- Morris' style contextual equivalence \sim_{c} for the π-calculus
$\boldsymbol{\rightarrow} \boldsymbol{r}$ requires a notion of success
\boldsymbol{m} extend the π-calculus by a constant Stop to denote success (similar as [Gorla'10, Peters et al.'14])
- tools and techniques to prove contextual equivalences
\boldsymbol{r} a context lemma
\boldsymbol{B} a sound similarity
- compare \sim_{c} with process equivalences in the π-calculus

Syntax of the $\Pi_{\text {Stop }}$-Calculus

Processes:

P :: $=$	$\pi . P$
\|	$P_{1} \mid P_{2}$
	$!P$
	0
	$\nu x . P$
	Stop

$\begin{array}{cll}\pi & ::= & x(y) \\ & & \text { input } \\ & \bar{x}\langle y\rangle & \text { output }\end{array}$
where x, y are names

Contexts:

$$
C::=[\cdot]|\pi . C| C|P| P|C|!C \mid \nu x . C
$$

"processes with a single hole"

Operational Semantics

Reduction rule for interaction:

Operational Semantics

Reduction rule for interaction:

Reduction contexts: $\mathbf{D} \in \mathcal{D}::=[\cdot]|\mathbf{D}| P|P| \mathbf{D} \mid \nu x . \mathbf{D}$
Structural congruence \equiv :

$$
\begin{array}{rlrr}
P & \equiv Q, \text { if } P={ }_{\alpha} Q & P \mid \mathbf{0} \equiv P & \nu x . \text { Stop } \equiv \text { Stop } \\
P_{1} \mid\left(P_{2} \mid P_{3}\right) & \equiv\left(P_{1} \mid P_{2}\right) \mid P_{3} & P|Q \equiv Q| P & \nu z . \nu w . P \equiv \nu w . \nu z . P \\
\nu z .\left(P_{1} \mid P_{2}\right) & \equiv P_{1} \mid \nu z . P_{2}, \text { if } z \notin \operatorname{fn}\left(P_{1}\right) & \nu z .0 \equiv \mathbf{0} & !P \equiv P \mid!P
\end{array}
$$

Standard reduction

$$
\frac{P \equiv \mathrm{D}\left[P^{\prime}\right] \wedge P^{\prime} \xrightarrow[\longrightarrow]{i a} Q^{\prime} \wedge \mathrm{D}\left[Q^{\prime}\right] \equiv Q}{P \xrightarrow{s r} Q}
$$

$$
x(y) . \mathbf{0}|\bar{x}\langle z\rangle .0| x(y) . \text { Stop }
$$

$x(y) .0|\bar{x}\langle z\rangle .0| x(y) . S t o p$
 $0|0| x(y) . S t o p$

$x(y) .0|\bar{x}\langle z\rangle .0| x(y)$. Stop
 $0|0| x(y) . S t o p$
 III
 $x(y)$.Stop

- Process P is successful $(\operatorname{stop}(P))$ iff $P \equiv$ Stop $\mid P^{\prime}$

- Process P is successful $(\operatorname{stop}(P))$ iff $P \equiv$ Stop $\mid P^{\prime}$

- Process P is successful $(\operatorname{stop}(P))$ iff $P \equiv$ Stop $\mid P^{\prime}$
- May-convergence $\quad P \downarrow$ iff $\exists P^{\prime}: P \xrightarrow{s r, *} P^{\prime} \wedge \operatorname{stop}\left(P^{\prime}\right)$
- Should-convergence $P \Downarrow$ iff $\forall P^{\prime}: P \xrightarrow{s r, *} P^{\prime} \Longrightarrow P^{\prime} \downarrow$.
- may-divergence $P \uparrow$ iff $\neg P \Downarrow$
- must-divergence $P \Uparrow$ iff $\neg P \downarrow$

- Process P is successful $(\operatorname{stop}(P))$ iff $P \equiv$ Stop $\mid P^{\prime}$
- May-convergence $\quad P \downarrow$ iff $\exists P^{\prime}: P \xrightarrow{s r, *} P^{\prime} \wedge \operatorname{stop}\left(P^{\prime}\right)$
- Should-convergence $P \Downarrow$ iff $\forall P^{\prime}: P \xrightarrow{s r, *} P^{\prime} \Longrightarrow P^{\prime} \downarrow$.
- may-divergence $P \uparrow$ iff $\neg P \Downarrow$
- must-divergence $P \Uparrow$ iff $\neg P \downarrow$

Contextual Equivalence

Contextual Equivalence
$P \sim_{c} Q$ iff $\forall C \in \mathcal{C}: C[P] \downarrow \Longleftrightarrow C[Q] \downarrow$ and $C[P] \Downarrow \Longleftrightarrow C[Q] \Downarrow$

Contextual Equivalence

$P \sim_{c} Q$ iff $\forall C \in \mathcal{C}: C[P] \downarrow \Longleftrightarrow C[Q] \downarrow$ and $C[P] \Downarrow \Longleftrightarrow C[Q] \Downarrow$

Details

Contextual may-preorder $\quad P \leq_{c, \downarrow} Q$ iff $\forall C: C[P] \downarrow \Longrightarrow C[Q] \downarrow$ Contextual should-preorder $P \leq_{c, \Downarrow} Q$ iff $\forall C: C[P] \Downarrow \Longrightarrow C[Q] \Downarrow$

Contextual preorder
Contextual equivalence

$$
\leq_{c}:=\leq_{c, \downarrow} \cap \leq_{c, \Downarrow}
$$

$$
\sim_{c} \quad:=\leq_{c} \cap \geq_{c}
$$

Context Lemma

If for all name substitutions σ and processes R :

- $(\sigma(P) \mid R) \downarrow \Longrightarrow(\sigma(Q) \mid R) \downarrow$ and
- $(\sigma(P) \mid R) \Downarrow \Longrightarrow(\sigma(Q) \mid R) \Downarrow$
then $P \leq_{c} Q$.
"it suffices to consider contexts $\sigma([\cdot]) \mid R$ "

"Applicative" May-Similarity

Full applicative \downarrow-similarity $P \underset{b, \downarrow}{\precsim} Q$ iff $\forall \sigma: \sigma(P) \precsim b, \downarrow \sigma(Q)$
where $\precsim_{b, \downarrow}$ is the greatest fixpoint of $\boldsymbol{F}_{b, \downarrow}$ and
$\boldsymbol{F}_{b, \downarrow}$ is the operator binary relations η on processes, s.t. $P \boldsymbol{F}_{b, \downarrow}(\eta) Q$ iff
(1) If P is successful, then $Q \downarrow$.
(2) If $P \xrightarrow{s r} P^{\prime}$, then $\exists Q^{\prime}$ with $Q \xrightarrow{s r, *} Q^{\prime}$ and $P^{\prime} \eta Q^{\prime}$.
(3) If P is not successful, then:

"Applicative" May-Similarity

Full applicative \downarrow-similarity $P \underset{{ }_{b, \downarrow}}{\sigma} Q$ iff $\forall \sigma: \sigma(P) \precsim{ }_{b, \downarrow} \sigma(Q)$
where $\precsim_{b, \downarrow}$ is the greatest fixpoint of $\boldsymbol{F}_{b, \downarrow}$ and $\boldsymbol{F}_{b, \downarrow}$ is the operator binary relations η on processes, s.t. $P \boldsymbol{F}_{b, \downarrow}(\eta) Q$ iff
(1) If P is successful, then $Q \downarrow$.
(2) If $P \xrightarrow{s r} P^{\prime}$, then $\exists Q^{\prime}$ with $Q \xrightarrow{s r, *} Q^{\prime}$ and $P^{\prime} \eta Q^{\prime}$.
(3) If P is not successful, then:

- Open input: If $P \equiv D\left[x(y) \cdot P_{1}\right]$, then
$\left(\forall z \in \mathcal{N}: \exists Q^{\prime}: Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[x(y) \cdot Q_{1}\right] \wedge D\left[P_{1}[z / y]\right] \eta D^{\prime}\left[Q_{1}[z / y]\right]\right)$ where x is free in P and Q^{\prime}

"Applicative" May-Similarity

Full applicative \downarrow-similarity $P \underset{{ }_{b, \downarrow}}{\sigma} Q$ iff $\forall \sigma: \sigma(P) \precsim{ }_{b, \downarrow} \sigma(Q)$
where $\precsim_{b, \downarrow}$ is the greatest fixpoint of $\boldsymbol{F}_{b, \downarrow}$ and $\boldsymbol{F}_{b, \downarrow}$ is the operator binary relations η on processes, s.t. $P \boldsymbol{F}_{b, \downarrow}(\eta) Q$ iff
(1) If P is successful, then $Q \downarrow$.
(2) If $P \xrightarrow{s r} P^{\prime}$, then $\exists Q^{\prime}$ with $Q \xrightarrow{s r, *} Q^{\prime}$ and $P^{\prime} \eta Q^{\prime}$.
(3) If P is not successful, then:

- Open input: If $P \equiv D\left[x(y) \cdot P_{1}\right]$, then
$\left(\forall z \in \mathcal{N}: \exists Q^{\prime}: Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[x(y) \cdot Q_{1}\right] \wedge D\left[P_{1}[z / y]\right] \eta D^{\prime}\left[Q_{1}[z / y]\right]\right)$ where x is free in P and Q^{\prime}
- Open output: If $P \equiv D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[\bar{x}\langle y\rangle . Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x, y are free in P and Q^{\prime}

"Applicative" May-Similarity

Full applicative \downarrow-similarity $P \underset{b, \downarrow}{\precsim} Q$ iff $\forall \sigma: \sigma(P) \precsim b, \downarrow \sigma(Q)$
where $\precsim_{b, \downarrow}$ is the greatest fixpoint of $\boldsymbol{F}_{b, \downarrow}$ and
$\boldsymbol{F}_{b, \downarrow}$ is the operator binary relations η on processes, s.t. $P \boldsymbol{F}_{b, \downarrow}(\eta) Q$ iff
(1) If P is successful, then $Q \downarrow$.
(2) If $P \xrightarrow{s r} P^{\prime}$, then $\exists Q^{\prime}$ with $Q \xrightarrow{s r, *} Q^{\prime}$ and $P^{\prime} \eta Q^{\prime}$.
(3) If P is not successful, then:

- Open input: If $P \equiv D\left[x(y) \cdot P_{1}\right]$, then
$\left(\forall z \in \mathcal{N}: \exists Q^{\prime}: Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[x(y) \cdot Q_{1}\right] \wedge D\left[P_{1}[z / y]\right] \eta D^{\prime}\left[Q_{1}[z / y]\right]\right)$ where x is free in P and Q^{\prime}
- Open output: If $P \equiv D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then
$\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[\bar{x}\langle y\rangle . Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x, y are free in P and Q^{\prime}
- Bound output: If $P \equiv \nu y \cdot D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv \nu y \cdot D^{\prime}\left[\bar{x}\langle y\rangle \cdot Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x is free in P and Q^{\prime}

"Applicative" Should-Similarity

Full applicative \uparrow-similarity $P \underset{b, \uparrow}{\precsim} Q$ iff $\forall \sigma: \sigma(P) \precsim_{b, \downarrow} \sigma(Q)$
where $\precsim_{b, \uparrow}$ is the greatest fixpoint of $\boldsymbol{F}_{b, \uparrow}$ and
$\boldsymbol{F}_{b, \uparrow}$ is the operator binary relations η on processes, s.t. $P \boldsymbol{F}_{b, \uparrow}(\eta) Q$ iff
(1) If P is successful, then $Q \downarrow$.
(2) If $P \xrightarrow{s r} P^{\prime}$, then $\exists Q^{\prime}$ with $Q \xrightarrow{s r, *} Q^{\prime}$ and $P^{\prime} \eta Q^{\prime}$.
(3) If P is not successfut, then:

- Open input: If $P \equiv D\left[x(y) \cdot P_{1}\right]$, then
$\left(\forall z \in \mathcal{N}: \exists Q^{\prime}: Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[x(y) \cdot Q_{1}\right] \wedge D\left[P_{1}[z / y]\right] \eta D^{\prime}\left[Q_{1}[z / y]\right]\right)$ where x is free in P and Q^{\prime}
- Open output: If $P \equiv D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[\bar{x}\langle y\rangle . Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x, y are free in P and Q^{\prime}
- Bound output: If $P \equiv \nu y \cdot D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv \nu y \cdot D^{\prime}\left[\bar{x}\langle y\rangle \cdot Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x is free in P and Q^{\prime}

"Applicative" Should-Similarity

Full applicative \uparrow-similarity $P \underset{b, \uparrow}{\precsim} Q$ iff $\forall \sigma: \sigma(P) \precsim_{b, \downarrow} \sigma(Q)$
where $\precsim_{b, \uparrow}$ is the greatest fixpoint of $\boldsymbol{F}_{b, \uparrow}$ and
$\boldsymbol{F}_{b, \uparrow}$ is the operator binary relations η on processes, s.t. $P \boldsymbol{F}_{b, \uparrow}(\eta) Q$ iff
(1) If $P \Uparrow$, then $Q \uparrow$.
(2) If $P \xrightarrow{s r} P^{\prime}$, then $\exists Q^{\prime}$ with $Q \xrightarrow{s r, *} Q^{\prime}$ and $P^{\prime} \eta Q^{\prime}$.
(3) If P is not successful, then:

- Open input: If $P \equiv D\left[x(y) \cdot P_{1}\right]$, then
$\left(\forall z \in \mathcal{N}: \exists Q^{\prime}: Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[x(y) \cdot Q_{1}\right] \wedge D\left[P_{1}[z / y]\right] \eta D^{\prime}\left[Q_{1}[z / y]\right]\right)$ where x is free in P and Q^{\prime}
- Open output: If $P \equiv D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[\bar{x}\langle y\rangle . Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x, y are free in P and Q^{\prime}
- Bound output: If $P \equiv \nu y . D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv \nu y \cdot D^{\prime}\left[\bar{x}\langle y\rangle \cdot Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x is free in P and Q^{\prime}

"Applicative" Should-Similarity

Full applicative \uparrow-similarity $P \underset{b, \uparrow}{\precsim} Q$ iff $\forall \sigma: \sigma(P) \precsim{ }_{b, \downarrow} \sigma(Q)$
where $\precsim_{b, \uparrow}$ is the greatest fixpoint of $\boldsymbol{F}_{b, \uparrow}$ and
$\boldsymbol{F}_{b, \uparrow}$ is the operator binary relations η on processes, s.t. $P \boldsymbol{F}_{b, \uparrow}(\eta) Q$ iff
(1) If $P \Uparrow$, then $Q \uparrow$.
(2) If $P \xrightarrow{s r} P^{\prime}$, then $\exists Q^{\prime}$ with $Q \xrightarrow{s r, *} Q^{\prime}$ and $P^{\prime} \eta Q^{\prime}$.
(3) If $\neg P$ 介, then:

- Open input: If $P \equiv D\left[x(y) \cdot P_{1}\right]$, then $\left(\forall z \in \mathcal{N}: \exists Q^{\prime}: Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[x(y) \cdot Q_{1}\right] \wedge D\left[P_{1}[z / y]\right] \eta D^{\prime}\left[Q_{1}[z / y]\right]\right)$ where x is free in P and Q^{\prime}
- Open output: If $P \equiv D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[\bar{x}\langle y\rangle . Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x, y are free in P and Q^{\prime}
- Bound output: If $P \equiv \nu y . D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv \nu y \cdot D^{\prime}\left[\bar{x}\langle y\rangle \cdot Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x is free in P and Q^{\prime}

"Applicative" Should-Similarity

Full applicative \uparrow-similarity $P \underset{b, \uparrow}{\precsim} Q$ iff $\forall \sigma: \sigma(P) \precsim{ }_{b, \downarrow} \sigma(Q)$
where $\precsim_{b, \uparrow}$ is the greatest fixpoint of $\boldsymbol{F}_{b, \uparrow}$ and
$\boldsymbol{F}_{b, \uparrow}$ is the operator binary relations η on processes, s.t. $P \boldsymbol{F}_{b, \uparrow}(\eta) Q$ iff
(1) If $P \Uparrow$, then $Q \uparrow$.
(2) If $P \xrightarrow{s r} P^{\prime}$, then $\exists Q^{\prime}$ with $Q \xrightarrow{s r, *} Q^{\prime}$ and $P^{\prime} \eta Q^{\prime}$.
(3) If $\neg P$ 介, then:

- Open input: If $P \equiv D\left[x(y) \cdot P_{1}\right]$, then $\left(\forall z \in \mathcal{N}: \exists Q^{\prime}: Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[x(y) \cdot Q_{1}\right] \wedge D\left[P_{1}[z / y]\right] \eta D^{\prime}\left[Q_{1}[z / y]\right]\right)$ where x is free in P and Q^{\prime}
- Open output: If $P \equiv D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv D^{\prime}\left[\bar{x}\langle y\rangle . Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x, y are free in P and Q^{\prime}
- Bound output: If $P \equiv \nu y . D\left[\bar{x}\langle y\rangle . P_{1}\right]$ then $\left(Q \xrightarrow{s r, *} Q^{\prime} \equiv \nu y \cdot D^{\prime}\left[\bar{x}\langle y\rangle \cdot Q_{1}\right] \wedge D\left[P_{1}\right] \eta D\left[Q_{1}\right]\right)$ where x is free in P and Q^{\prime}
(9) $Q \precsim_{b, \downarrow} P$

Applicative Similarity: Soundness

Theorem (Soundness)

$$
\left(P \precsim_{b, \downarrow}^{\sigma} Q \wedge Q \precsim_{b, \uparrow}^{\sigma} P\right) \quad \Longrightarrow \quad P \leq_{c} Q
$$

Proof (outline):

- if $\left(P \precsim_{b, \downarrow} Q\right)$ then $((P \mid R) \downarrow \Longrightarrow(Q \mid R) \downarrow)$
- if $\left(Q \precsim_{b, \uparrow} P\right)$ then $((P \mid R) \Downarrow \Longrightarrow(Q \mid R) \Downarrow)$

Theorem (Soundness)

$$
\left(P \precsim_{b, \downarrow}^{\sigma} Q \wedge Q \underset{\sim, \uparrow}{\precsim} P\right) \quad \Longrightarrow \quad P \leq_{c} Q
$$

Proof (outline):

- if $\left(P \precsim_{b, \downarrow}^{\sigma} Q\right)$ then $((\sigma(P) \mid R) \downarrow \Longrightarrow(\sigma(Q) \mid R) \downarrow)$
- if $(Q \underset{b, \uparrow}{\precsim} P)$ then $((\sigma(P) \mid R) \Downarrow \Longrightarrow(\sigma(Q) \mid R) \Downarrow)$

Theorem (Soundness)

$$
\left(P \precsim_{b, \downarrow}^{\sigma} Q \wedge Q \precsim_{b, \uparrow}^{\sigma} P\right) \quad \Longrightarrow \quad P \leq_{c} Q
$$

Proof (outline):

- if $\left(P \precsim_{b, \downarrow}^{\sigma} Q\right)$ then $((\sigma(P) \mid R) \downarrow \Longrightarrow(\sigma(Q) \mid R) \downarrow)$
- if $(Q \underset{b, \uparrow}{\precsim} P)$ then $((\sigma(P) \mid R) \Downarrow \Longrightarrow(\sigma(Q) \mid R) \Downarrow)$
- apply the context lemma

Applicative Similarity: Soundness

Theorem (Soundness)

$$
\left(P \precsim_{b, \downarrow}^{\sigma} Q \wedge Q \precsim_{b, \uparrow}^{\sigma} P\right) \quad \Longrightarrow \quad P \leq_{c} Q
$$

Proof (outline):

- if $(P \underset{b, \downarrow}{\sigma} Q)$ then $((\sigma(P) \mid R) \downarrow \Longrightarrow(\sigma(Q) \mid R) \downarrow)$
- if $(Q \underset{b, \uparrow}{\precsim} P)$ then $((\sigma(P) \mid R) \Downarrow \Longrightarrow(\sigma(Q) \mid R) \Downarrow)$
- apply the context lemma

Remark: let \oplus be an encoded choice-operator and

$$
A:=a(x) . \mathbf{0} \quad B:=b(x) . \mathbf{0} \quad C:=c(x) . \mathbf{0}
$$

then $(A \oplus B) \oplus C \sim_{c} A \oplus(B \oplus C)$ but $(A \oplus B) \oplus C \mathscr{L}_{b, \uparrow}^{\sigma} A \oplus(B \oplus C)$ (main reason: $4^{\text {th }}$ condition)

Applicative Similarity: Soundness

Theorem (Soundness)

$$
\left(P \precsim_{b, \downarrow}^{\sigma} Q \wedge Q \underset{\precsim_{b, \uparrow}^{\sigma}}{\sigma} \quad \Longrightarrow \quad P \leq_{c} Q\right.
$$

Proof (outline):

- if $(P \underset{b, \downarrow}{\sigma} Q)$ then $((\sigma(P) \mid R) \downarrow \Longrightarrow(\sigma(Q) \mid R) \downarrow)$
- if $(Q \underset{b, \uparrow}{\precsim} P)$ then $((\sigma(P) \mid R) \Downarrow \Longrightarrow(\sigma(Q) \mid R) \Downarrow)$
- apply the context lemma

Remark: let \oplus be an encoded choice-operator and

$$
A:=a(x) . \mathbf{0} \quad B:=b(x) . \mathbf{0} \quad C:=c(x) . \mathbf{0}
$$

then $(A \oplus B) \oplus C \sim_{c} A \oplus(B \oplus C)$ but $(A \oplus B) \oplus C \not \mathscr{L}_{b, \uparrow}^{\sigma} A \oplus(B \oplus C)$ (main reason: $4^{\text {th }}$ condition)
Open problem: find a coarser sound similarity for \uparrow

Correctness of Deterministic Interaction
For all processes P, Q the following equation holds:

$$
\nu x \cdot(x(y) \cdot P \mid \bar{x}\langle z\rangle . Q)) \sim_{c} \nu x .(P[z / y] \mid Q)
$$

Proof (outline):

- $\mathcal{S}:=\equiv \cup\{(\sigma(\nu x \cdot(x(y) . P \mid \bar{x}\langle z\rangle \cdot Q)), \sigma(\nu x \cdot(P[z / y] \mid Q)))$ for all $x, y, z, P, Q, \sigma\}$
- \mathcal{S} and \mathcal{S}^{-1} are $F_{b, \downarrow}$-dense and $F_{b, \uparrow}$-dense
- $\mathcal{S} \subseteq F_{b, \downarrow}(\mathcal{S})$ and thus $\mathcal{S} \subseteq \precsim_{b, \downarrow}$
- $\mathcal{S} \subseteq F_{b, \uparrow}(\mathcal{S})$ and thus $\mathcal{S} \subseteq \precsim_{b, \uparrow}$
- $\mathcal{S}^{-1} \subseteq F_{b, \downarrow}\left(\mathcal{S}^{-1}\right)$ and thus $\mathcal{S}^{-1} \subseteq \precsim_{b, \downarrow}$
- $\mathcal{S}^{-1} \subseteq F_{b, \uparrow}\left(\mathcal{S}^{-1}\right)$ and thus $\mathcal{S}^{-1} \subseteq \precsim_{b, \uparrow}$

Theorem

For all processes P, Q the following equivalences hold:
(1) ! $P \sim_{c}!!P$.
(2) $!P \mid!P \sim_{c}!P$.
(3) ! $(P \mid Q) \sim_{c}!P \mid!Q$.
(c)! $0 \sim_{c} 0$.
(5) ! Stop \sim_{c} Stop.
(0) ! $(P \mid Q) \sim_{c}!(P \mid Q) \mid P$.
(1) $x(y) . \nu z . P \sim_{c} \nu z . x(y) . P$ if $z \notin\{x, y\}$.
(8) $\bar{x}\langle y\rangle . \nu z . P \sim_{c} \nu z \cdot \bar{x}\langle y\rangle . P$ if $z \notin\{x, y\}$.

Analyzing the Contextual Ordering

Theorem

(1) If P, Q are two successful processes, then $P \sim_{c} Q$.
(2) If P, Q are two processes with $P \downarrow, Q \downarrow$, then $P \sim_{c, \downarrow} Q$.
(3) There are may-convergent processes P, Q with $P \not \chi_{c} Q$.
(9) Stop is the greatest process w.r.t. \leq_{c}.
(3) $\mathbf{0}$ is the smallest process w.r.t. $\leq_{c, \downarrow}$.
(0) There is no smallest process w.r.t. \leq_{c}.
$\Pi=$ subcalculus of $\Pi_{\text {Stop }}$ without constant Stop (in processes, contexts, ...)

Barbed Testing in Π

- $P \upharpoonright^{x}=P$ has a barb on input $x: P \equiv D\left[x(y) . P^{\prime}\right]$ (where x is free)
- May-testing: $\left.P\right|_{x}$ iff $\exists P^{\prime}: P \xrightarrow{s r, *} P^{\prime} \wedge P \Gamma^{x}$
- Should-testing: $P 屯_{x}$ iff $\forall P^{\prime}:\left.P \xrightarrow{s r, *} P^{\prime} \Longrightarrow P^{\prime}\right|_{x}$
- Barbed may- and should-testing equivalence
[Fournet \& Gonthier'05]

$$
P \sim_{c, \text { barb }} Q \text { iff } \forall C:\left.C[P]\right|_{x} \Longleftrightarrow C[Q] \mathrm{L}_{x} \wedge C[P] \mathbb{H}_{x} \Longleftrightarrow C[Q] \mathbb{H}_{x}
$$

Conservativity

Theorem

For all Stop-free processes $P, Q: P \sim_{c, b a r b} Q \Longleftrightarrow P \sim_{c} Q$.

Consequences:

- $\left\langle\Pi_{\text {Stop }}, \sim_{c}\right\rangle$ conservatively extends $\left\langle\Pi, \sim_{c, b a r b}\right\rangle$
- the shown Stop-free equivalences also hold in $\left\langle\Pi, \sim_{c, b a r b}\right\rangle$

Conclusion

- Morris' style contextual equivalence w.r.t may- and should-convergence in a π-calculus with Stop
- tools: context lemma, sound applicative similarities
- several proved process equivalences using the tools
- conservatively extends barbed may- and should-testing in the π-calculus, s.t. results can be transferred back

Conclusion \& Future Work

Conclusion

- Morris' style contextual equivalence w.r.t may- and should-convergence in a π-calculus with Stop
- tools: context lemma, sound applicative similarities
- several proved process equivalences using the tools
- conservatively extends barbed may- and should-testing in the π-calculus, s.t. results can be transferred back

Future work

- extend the results to variants of the π-calculus (guarded sums, matching prefixes, ...)
- analyze encodings between concurrent lambda-calculi and the π-calculus w.r.t. contextual equivalence
- find a better sound should-similarity

